HTTP/2 301
date: Sun, 18 Jan 2026 05:57:50 GMT
content-length: 0
location: https://doi.org/10.1101/234120
server: cloudflare
vary: Origin
expires: Mon, 19 Jan 2026 05:57:50 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=cP6vIuYRJBhPvX91TfYQrncabtoeVBrCArTX1Z7U5wsZO118QQZEQjbzPUQHsicT8iprGUT0rS1%2BLa76CJt4itlR0odbXA%3D%3D"}]}
cf-ray: 9bfbdb6baaffc1c4-BLR
alt-svc: h3=":443"; ma=86400
HTTP/2 302
date: Sun, 18 Jan 2026 05:57:50 GMT
content-type: text/html;charset=utf-8
location: https://biorxiv.org/lookup/doi/10.1101/234120
server: cloudflare
vary: Origin
vary: Accept
expires: Sun, 18 Jan 2026 06:11:00 GMT
permissions-policy: interest-cohort=(),browsing-topics=()
cf-cache-status: DYNAMIC
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
strict-transport-security: max-age=31536000; includeSubDomains; preload
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=UYyUWqcTbHSf6NzIXEdFtM7OIrabAdwH3SpUXvyNiLoHDjQ57csUulFQPImIXZoEayJe6C%2FA100xWsmWAKnnCqrlpIA1QQ%3D%3D"}]}
cf-ray: 9bfbdb6beb18c1c4-BLR
alt-svc: h3=":443"; ma=86400
HTTP/1.1 302 Found
Date: Sun, 18 Jan 2026 05:57:50 GMT
Content-Type: text/html; charset=iso-8859-1
Transfer-Encoding: chunked
Connection: keep-alive
server: cloudflare
location: https://www.biorxiv.org/lookup/doi/10.1101/234120
cf-cache-status: DYNAMIC
Nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
Report-To: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=PnZ7hksyTGwQo%2FhZxmHtLfnwIvAvlbnzLFbZMgGc1XJZ2wu3UJmpY1CUfh33k5dq%2Fa12WtnWmGO%2Bf5bsgFx6C9wWQhnoAJxlr20s"}]}
CF-RAY: 9bfbdb6c7df34055-BOM
alt-svc: h3=":443"; ma=86400
HTTP/2 301
date: Sun, 18 Jan 2026 05:57:51 GMT
content-type: text/html; charset=UTF-8
location: https://www.biorxiv.org/content/10.1101/234120v4
cf-ray: 9bfbdb6fad12b155-BLR
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 18 Jan 2026 06:27:51 GMT
cache-control: public, max-age=1800
x-varnish-ttl:
pragma: no-cache
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 693585449
x-varnish-cache:
via: 1.1 varnish
cf-cache-status: MISS
set-cookie: __cf_bm=3TPJWwKDSHmr1CCePy5vJuNHSDlcVR3jjbupohvCbQU-1768715871-1.0.1.1-y8ueRBiqzrOo4NU0TWKgq5.sgQRfZqoaswky6akVlblarkFf67sMF_.slqAmPSu8cS1ksfs7xTEDw5xcSBVlJ.ebcspRnnsxNUENGESIRPk; path=/; expires=Sun, 18-Jan-26 06:27:51 GMT; domain=.www.biorxiv.org; HttpOnly; Secure; SameSite=None
server: cloudflare
HTTP/2 200
date: Sun, 18 Jan 2026 05:57:52 GMT
content-type: text/html; charset=utf-8
content-encoding: gzip
x-content-type-options: nosniff
x-content-type-options: nosniff
x-drupal-cache: MISS
expires: Sun, 19 Nov 1978 05:00:00 GMT
cache-control: no-cache, must-revalidate
set-cookie: SSESS1dd6867f1a1b90340f573dcdef3076bc=XeSJbHqE_fmwZN6kaHr0KjnPJLeyJmagFmg8kmXtPH8; expires=Tue, 10-Feb-2026 09:31:11 GMT; path=/; domain=.biorxiv.org; secure; HttpOnly
content-language: en
x-frame-options: SAMEORIGIN
x-generator: Drupal 7 (https://drupal.org)
link:
; rel="canonical",; rel="shortlink"
vary: Accept-Encoding
x-highwire-sitecode: biorxiv
x-highwire-smart-code: biorxiv_production
x-varnish: 1891456695
age: 0
via: 1.1 varnish
x-varnish-ttl:
x-varnish-cache:
cf-cache-status: DYNAMIC
server: cloudflare
cf-ray: 9bfbdb73092db155-BLR
Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks | bioRxiv
New Results
Pediatric Bone Age Assessment Using Deep Convolutional Neural Networks
doi: https://doi.org/10.1101/234120

Abstract
Skeletal bone age assessment is a common clinical practice to diagnose endocrine and metabolic disorders in child development. In this paper, we describe a fully automated deep learning approach to the problem of bone age assessment using data from the 2017 Pediatric Bone Age Challenge organized by the Radiological Society of North America. The dataset for this competition consists of 12,600 radiological images. Each radiograph in this dataset is an image of a left hand labeled with bone age and sex of a patient. Our approach utilizes several deep neural network architectures trained end-to-end. We use images of whole hands as well as specific parts of a hand for both training and prediction. This approach allows us to measure the importance of specific hand bones for automated bone age analysis. We further evaluate the performance of the suggested method in the context of skeletal development stages. Our approach outperforms other common methods for bone age assessment.
Copyright
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license.