| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
x-origin-cache: HIT
last-modified: Fri, 19 Dec 2025 09:09:11 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"69451637-4dd5"
expires: Tue, 30 Dec 2025 21:08:51 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 29AB:3FD64F:A827D5:BCDBFE:69543D0A
accept-ranges: bytes
age: 0
date: Tue, 30 Dec 2025 20:58:51 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210044-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767128331.401914,VS0,VE210
vary: Accept-Encoding
x-fastly-request-id: e3a7c56bf26ad16e4a4113ce70923323240efd4c
content-length: 5529
CV4DT Research Group

Previous
Next
CV4DT
The Computer Vision for Digital Twins (CV4DT) is a research group based at the University of Cambridge and led by Olaf Wysocki. The CV4DT centres on developing methods and datasets for pushing the boundaries of 3D computer vision for accurate transfer of reality into the digital world to enable simulation before any action is taken.

3D Semantic Understanding
3D scene understanding with imbalanced data
3D Semantic Object Reconstruction
Reconstructing high-detail semantic 3D models
3D Models as Novel Modality
High-detail structured 3D models as new sensor signal
Latest Papers
Duc Nguyen, Yan-Ling Lai, Qilin Zhang, Prabin Gyawali, Benedikt Schwab, Olaf Wysocki, Thomas H Kolbe
(2025).
TrueCity: Real and Simulated Urban Data for Cross-Domain 3D Scene Understanding.
3DV ‘26.
3DV ‘26.
Shuhao Kang, Martin Y Liao, Yan Xia, Olaf Wysocki, Boris Jutzi, Daniel Cremers
(2025).
OPAL: Visibility-aware Lidar-to-OpenStreetMap Place Recognition via Adaptive Radial Fusion.
CoRL ‘25.
CoRL ‘25.
Wenzhao Tang, Weihang Li, Xiucheng Liang, Olaf Wysocki, Filip Biljecki, Christoph Holst, Boris Jutzi
(2025).
Texture2LoD3: Enabling LoD3 Building Reconstruction With Panoramic Images.
CVPR ‘25.
CVPR ‘25.
Yuan Luo, Rudolf Hoffmann, Yan Xia, Olaf Wysocki, Benedikt Schwab, Thomas H Kolbe, Daniel Cremers
(2025).
RADLER: Radar Object Detection Leveraging Semantic 3D City Models and Self-Supervised Radar-Image Learning.
CVPR ‘25.
CVPR ‘25.