Exporters From Japan
Wholesale exporters from Japan   Company Established 1983
CARVIEW
Select Language

Real Imputation Benchmarks

DatasetMiss rateMetricMethod
MeanLerpBRITSGP-VAEUS-GANTimesNetCSDISAITSModernTCNLSCD
PhysioNet10 %MAE0.7140.3720.2780.4690.3230.3750.2190.2320.3510.211
RMSE1.0350.7080.6930.7830.6620.6900.5450.5830.6970.494
S-MAE0.0320.0200.0160.0260.0200.0220.0130.0140.0200.012
50 %MAE0.7110.4170.3850.5210.4490.4530.3070.3150.4400.303
RMSE1.0910.8400.8330.9070.8520.8400.6720.7350.8030.664
S-MAE0.1110.0870.0640.0830.0760.0760.0520.0550.0710.052
90 %MAE0.7100.5650.5600.6420.6700.6420.4810.5650.6470.479
RMSE1.0970.9930.9751.0381.0601.0310.8340.9711.0260.832
S-MAE0.1480.1890.1040.1240.1250.1310.0930.1080.1370.093
PM 2.510 %MAE50.68515.36316.51923.94132.99922.6859.67015.42424.0899.069
RMSE66.55827.65826.77540.58648.95139.33619.09330.55840.05217.914
S-MAE0.1350.0390.0390.0600.0800.0560.0230.0340.0590.022

Table 2. Time- and frequency-domain imputation errors on two real-world datasets. PhysioNet is evaluated at 10%, 50% and 90% missingness rates, while PM 2.5 is evaluated at 10%. Metrics are MAE↓, RMSE↓ and S-MAE↓.

Lomb-Scargle Spectrum: Quick Start

Installation:
pip install git+https://github.com/asztr/LombScargle.git

Usage Example:
import torch
import math
import LombScargle
# Define example time series with single frequency = 5
t = torch.linspace(0, 10.0, 200) #timestamps
y = torch.sin(2*math.pi*5.0*t) #values
# Select frequencies to evaluate
freqs = torch.linspace(1e-5, 10.0, 100)
# Compute the normalized spectrum
ls = LombScargle.LombScargle(freqs)
P = ls(t, y, fap=True, norm=True)  # [1, 100] array of power values

BibTeX

@inproceedings{lscd2025,
  title     = {LSCD: Lomb–Scargle Conditioned Diffusion for Time-Series Imputation},
  author    = {Elizabeth Fons and Alejandro Sztrajman and Yousef El-Laham and Luciana Ferrer and
               Svitlana Vyetrenko and Manuela Veloso},
  booktitle = {Proc. 42nd International Conference on Machine Learning},
  year      = {2025}
}

LSCD · ICML 2025

© 2025 LSCD Authors.