| CARVIEW |
Select Language
Real Imputation Benchmarks
| Dataset | Miss rate | Metric | Method | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Mean | Lerp | BRITS | GP-VAE | US-GAN | TimesNet | CSDI | SAITS | ModernTCN | LSCD | |||
| PhysioNet | 10 % | MAE | 0.714 | 0.372 | 0.278 | 0.469 | 0.323 | 0.375 | 0.219 | 0.232 | 0.351 | 0.211 |
| RMSE | 1.035 | 0.708 | 0.693 | 0.783 | 0.662 | 0.690 | 0.545 | 0.583 | 0.697 | 0.494 | ||
| S-MAE | 0.032 | 0.020 | 0.016 | 0.026 | 0.020 | 0.022 | 0.013 | 0.014 | 0.020 | 0.012 | ||
| 50 % | MAE | 0.711 | 0.417 | 0.385 | 0.521 | 0.449 | 0.453 | 0.307 | 0.315 | 0.440 | 0.303 | |
| RMSE | 1.091 | 0.840 | 0.833 | 0.907 | 0.852 | 0.840 | 0.672 | 0.735 | 0.803 | 0.664 | ||
| S-MAE | 0.111 | 0.087 | 0.064 | 0.083 | 0.076 | 0.076 | 0.052 | 0.055 | 0.071 | 0.052 | ||
| 90 % | MAE | 0.710 | 0.565 | 0.560 | 0.642 | 0.670 | 0.642 | 0.481 | 0.565 | 0.647 | 0.479 | |
| RMSE | 1.097 | 0.993 | 0.975 | 1.038 | 1.060 | 1.031 | 0.834 | 0.971 | 1.026 | 0.832 | ||
| S-MAE | 0.148 | 0.189 | 0.104 | 0.124 | 0.125 | 0.131 | 0.093 | 0.108 | 0.137 | 0.093 | ||
| PM 2.5 | 10 % | MAE | 50.685 | 15.363 | 16.519 | 23.941 | 32.999 | 22.685 | 9.670 | 15.424 | 24.089 | 9.069 |
| RMSE | 66.558 | 27.658 | 26.775 | 40.586 | 48.951 | 39.336 | 19.093 | 30.558 | 40.052 | 17.914 | ||
| S-MAE | 0.135 | 0.039 | 0.039 | 0.060 | 0.080 | 0.056 | 0.023 | 0.034 | 0.059 | 0.022 | ||
Table 2. Time- and frequency-domain imputation errors on two real-world datasets. PhysioNet is evaluated at 10%, 50% and 90% missingness rates, while PM 2.5 is evaluated at 10%. Metrics are MAE↓, RMSE↓ and S-MAE↓.
Lomb-Scargle Spectrum: Quick Start
Installation:pip install git+https://github.com/asztr/LombScargle.git
Usage Example:
import torch
import math
import LombScargle
# Define example time series with single frequency = 5
t = torch.linspace(0, 10.0, 200) #timestamps
y = torch.sin(2*math.pi*5.0*t) #values
# Select frequencies to evaluate
freqs = torch.linspace(1e-5, 10.0, 100)
# Compute the normalized spectrum
ls = LombScargle.LombScargle(freqs)
P = ls(t, y, fap=True, norm=True) # [1, 100] array of power values
BibTeX
@inproceedings{lscd2025,
title = {LSCD: Lomb–Scargle Conditioned Diffusion for Time-Series Imputation},
author = {Elizabeth Fons and Alejandro Sztrajman and Yousef El-Laham and Luciana Ferrer and
Svitlana Vyetrenko and Manuela Veloso},
booktitle = {Proc. 42nd International Conference on Machine Learning},
year = {2025}
}