| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Sun, 12 Oct 2025 19:39:45 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"68ec0401-66ba"
expires: Tue, 30 Dec 2025 07:47:37 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 8714:2D8B9D:9C94F6:AFDCAB:69538140
accept-ranges: bytes
age: 0
date: Tue, 30 Dec 2025 07:37:37 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210074-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767080257.134026,VS0,VE237
vary: Accept-Encoding
x-fastly-request-id: aacd33ca2b05e433d6dcc0ed0090bc8adb37295f
content-length: 4514
Princeton Astro Data Lab
The Astro Data Lab at Princeton University builds algorithms and models to maximize the scientific power of large sky surveys.
What we do
Astronomy has large amounts of complex data from observations and simulations, which are traditionally used in isolation. This is where we come in.
- We build a global model of the sky from all available observations.
- We optimize the full experimental design process from instrumentation to survey strategy and data analysis.
Friends
Former members
- Charlotte Ward (Postdoc)
- Benjamin Remy (Postdoc)
- Yan Liang (Graduate student)
- ChangHoon Hahn (Research Scholar)
- Reese Owen (Senior thesis)
- Ben Horowitz (Postdoc)
- Yunona Iwasaki (Junior thesis)
- Satyue Lacayo (Junior thesis)
- Andrew Chen (Independent work)
- Remy Joseph (Postdoc)
- Tianshu Wang (Graduate student)
- Lucas Makinen (Senior thesis)
- Charles Minns (Senior thesis)
- Charles Zhao (Junior thesis)
Selected Papers
-
Spatially Resolved Galaxy–Dust Modeling with Coupled Data-driven Priors
Siegel, J.; Melchior, P.
The Astrophysical Journal, 2025, 986, 212 -
Reconstructing Quasar Spectra and Measuring the Lyα Forest with SpenderQ
Hahn, C.; Gontcho, S.; Melchior, P. and 37 co-authors
arXiv:2506.18986 -
Disentangling transients and their host galaxies with scarlet2: A framework to forward model multi-epoch imaging
Ward, C.; Melchior, P. and 7 co-authors
Astronomy and Computing, 2025, 51, 100930 -
Inhomogeneous Dust Biases Photometric Redshifts and Stellar Masses for LSST
Hahn, C.; Melchior, P.
The Astrophysical Journal, 2025, 982, L44 -
Joint cosmic density reconstruction from photometric and spectroscopic samples
Horowitz, B.; Melchior, P.
Monthly Notices of the Royal Astronomical Society, 2025, 538, 2050 -
The optical and infrared are connected
Jespersen, C.; Melchior, P.; Spergel, D.; Goulding, A.; Hahn, C.; Iyer, K.
arXiv:2503.03816 -
Score-matching neural networks for improved multi-band source separation
Sampson, M.; Melchior, P.; Ward, C.; Birmingham, S.
Astronomy & Computing, 2024, 49, 100875 -
AESTRA: Deep Learning for Precise Radial Velocity Estimation in the Presence of Stellar Activity
Liang, Y.; Winn, J.; Melchior, P.
The Astronomical Journal, 2024, 167, 23 -
PopSED: Population-level Inference for Galaxy Properties from Broadband Photometry with Neural Density Estimation
Li, J.; Melchior, P.; Hahn, C.; Huang, S.
The Astronomical Journal, 2024, 167, 16 -
Autoencoding Galaxy Spectra II: Redshift Invariance and Outlier Detection
Liang, Y.; Melchior, P.; Lu, S.; Goulding, A.; Ward, C.
The Astronomical Journal, 2023, 166, 75 -
Autoencoding Galaxy Spectra I: Architecture
Melchior, P.; Liang, Y.; Hahn, C.; Goulding, A.
The Astronomical Journal, 2023, 166, 74 -
Lightweight starshade position sensing with convolutional neural networks and simulation-based inference
Chen, A.; Harness, A.; Melchior, P.
Journal of Astronomical Telescopes, Instruments, and Systems, 2023, 9, 025002 -
Plausible Adversarial Attacks on Direct Parameter Inference Models in Astrophysics
Horowitz, B.; Melchior, P.
arXiv:2211.14788 -
Mangrove: Learning Galaxy Properties from Merger Trees
Jespersen, C.; Cranmer, M.; Melchior, P.; Ho, S.; Somerville, R.; Gabrielpillai, A.
The Astrophysical Journal, 2022, 941, 7 -
Accelerated Bayesian SED Modeling using Amortized Neural Posterior Estimation
Hahn, C.; Melchior, P.
The Astrophysical Journal, 2022, 938, 11 -
Graph Neural Network-based Resource Allocation Strategies for Multi-Object Spectroscopy
Wang, T.; Melchior, P.
Machine Learning: Science and Technology, 2022, 3, 015023 -
The challenge of blending in large sky surveys
Melchior, P.; Joseph, R.; Sanchez, J.; MacCrann, N.; Gruen, D.
Nature Reviews Physics, 2021, 3, 712 -
Joint survey processing: combined resampling and convolution for galaxy modelling and deblending
Joseph, R.; Melchior, P.; Moolekamp, F.
arXiv:2107.06984 -
Unsupervised Resource Allocation with Graph Neural Networks
Cranmer, M.; Melchior, P.; Nord, B.
PMLR, 2021, 148, 272-284 -
deep21: a Deep Learning Method for 21cm Foreground Removal
Makinen, T L; Lancaster, L.; Villaescusa-Navarro, F.; Melchior, P. and 3 co-authors
JCAP, 2021, 081 -
Hybrid Physical-Deep Learning Model for Astronomical Inverse Problems
Lanusse, F.; Melchior, P.; Moolekamp, F.
arXiv:1912.03980 -
Proximal Adam: Robust Adaptive Update Scheme for Constrained Optimization
Melchior, P.; Joseph, R.; Moolekamp, F.
arXiv:1910.10094 -
Filling the gaps: Gaussian mixture models from noisy, truncated or incomplete samples
Melchior, P.; Goulding, A. D.
A & C, 2018, 25, 183 -
SCARLET: Source separation in multi-band images by Constrained Matrix Factorization
Melchior, P. and 6 co-authors
A & C, 2018, 24, 129
Image credit: Dr. Hideaki Fujiwara - Subaru Telescope, NAOJ