| CARVIEW |
Select Language
HTTP/1.1 301 Moved Permanently
Date: Sat, 03 Jan 2026 11:14:47 GMT
Server: Apache/2.4.41 (Ubuntu)
Location: https://aclanthology.org/2024.naacl-short.36/
Content-Length: 336
Content-Type: text/html; charset=iso-8859-1
HTTP/1.1 200 OK
Date: Sat, 03 Jan 2026 11:14:48 GMT
Server: Apache/2.4.41 (Ubuntu)
Last-Modified: Mon, 29 Dec 2025 16:43:39 GMT
ETag: "879c-64719f1f1c5a1-gzip"
Accept-Ranges: bytes
Vary: Accept-Encoding
Content-Encoding: gzip
Content-Length: 8481
Content-Type: text/html; charset=utf-8
LEAF: Language Learners’ English Essays and Feedback Corpus - ACL Anthology
Correct Metadata for
Abstract
This paper addresses the issue of automated feedback generation for English language learners by presenting a corpus of English essays and their corresponding feedback, called LEAF, collected from the “essayforum” website. The corpus comprises approximately 6K essay-feedback pairs, offering a diverse and valuable resource for developing personalized feedback generation systems that address the critical deficiencies within essays, spanning from rectifying grammatical errors to offering insights on argumentative aspects and organizational coherence. Using this corpus, we present and compare multiple feedback generation baselines. Our findings shed light on the challenges of providing personalized feedback and highlight the potential of the LEAF corpus in advancing automated essay evaluation.- Anthology ID:
- 2024.naacl-short.36
- Volume:
- Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)
- Month:
- June
- Year:
- 2024
- Address:
- Mexico City, Mexico
- Editors:
- Kevin Duh, Helena Gomez, Steven Bethard
- Venue:
- NAACL
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 433–442
- Language:
- URL:
- https://aclanthology.org/2024.naacl-short.36/
- DOI:
- 10.18653/v1/2024.naacl-short.36
- Bibkey:
- Cite (ACL):
- Shabnam Behzad, Omid Kashefi, and Swapna Somasundaran. 2024. LEAF: Language Learners’ English Essays and Feedback Corpus. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), pages 433–442, Mexico City, Mexico. Association for Computational Linguistics.
- Cite (Informal):
- LEAF: Language Learners’ English Essays and Feedback Corpus (Behzad et al., NAACL 2024)
- Copy Citation:
- PDF:
- https://aclanthology.org/2024.naacl-short.36.pdf
- Video:
- https://aclanthology.org/2024.naacl-short.36.mp4
Export citation
@inproceedings{behzad-etal-2024-leaf,
title = "{LEAF}: Language Learners' {E}nglish Essays and Feedback Corpus",
author = "Behzad, Shabnam and
Kashefi, Omid and
Somasundaran, Swapna",
editor = "Duh, Kevin and
Gomez, Helena and
Bethard, Steven",
booktitle = "Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.naacl-short.36/",
doi = "10.18653/v1/2024.naacl-short.36",
pages = "433--442",
abstract = "This paper addresses the issue of automated feedback generation for English language learners by presenting a corpus of English essays and their corresponding feedback, called LEAF, collected from the ``essayforum'' website. The corpus comprises approximately 6K essay-feedback pairs, offering a diverse and valuable resource for developing personalized feedback generation systems that address the critical deficiencies within essays, spanning from rectifying grammatical errors to offering insights on argumentative aspects and organizational coherence. Using this corpus, we present and compare multiple feedback generation baselines. Our findings shed light on the challenges of providing personalized feedback and highlight the potential of the LEAF corpus in advancing automated essay evaluation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="https://www.loc.gov/mods/v3">
<mods ID="behzad-etal-2024-leaf">
<titleInfo>
<title>LEAF: Language Learners’ English Essays and Feedback Corpus</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shabnam</namePart>
<namePart type="family">Behzad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Omid</namePart>
<namePart type="family">Kashefi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Swapna</namePart>
<namePart type="family">Somasundaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2024-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Duh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helena</namePart>
<namePart type="family">Gomez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Mexico City, Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper addresses the issue of automated feedback generation for English language learners by presenting a corpus of English essays and their corresponding feedback, called LEAF, collected from the “essayforum” website. The corpus comprises approximately 6K essay-feedback pairs, offering a diverse and valuable resource for developing personalized feedback generation systems that address the critical deficiencies within essays, spanning from rectifying grammatical errors to offering insights on argumentative aspects and organizational coherence. Using this corpus, we present and compare multiple feedback generation baselines. Our findings shed light on the challenges of providing personalized feedback and highlight the potential of the LEAF corpus in advancing automated essay evaluation.</abstract>
<identifier type="citekey">behzad-etal-2024-leaf</identifier>
<identifier type="doi">10.18653/v1/2024.naacl-short.36</identifier>
<location>
<url>https://aclanthology.org/2024.naacl-short.36/</url>
</location>
<part>
<date>2024-06</date>
<extent unit="page">
<start>433</start>
<end>442</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings %T LEAF: Language Learners’ English Essays and Feedback Corpus %A Behzad, Shabnam %A Kashefi, Omid %A Somasundaran, Swapna %Y Duh, Kevin %Y Gomez, Helena %Y Bethard, Steven %S Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers) %D 2024 %8 June %I Association for Computational Linguistics %C Mexico City, Mexico %F behzad-etal-2024-leaf %X This paper addresses the issue of automated feedback generation for English language learners by presenting a corpus of English essays and their corresponding feedback, called LEAF, collected from the “essayforum” website. The corpus comprises approximately 6K essay-feedback pairs, offering a diverse and valuable resource for developing personalized feedback generation systems that address the critical deficiencies within essays, spanning from rectifying grammatical errors to offering insights on argumentative aspects and organizational coherence. Using this corpus, we present and compare multiple feedback generation baselines. Our findings shed light on the challenges of providing personalized feedback and highlight the potential of the LEAF corpus in advancing automated essay evaluation. %R 10.18653/v1/2024.naacl-short.36 %U https://aclanthology.org/2024.naacl-short.36/ %U https://doi.org/10.18653/v1/2024.naacl-short.36 %P 433-442
Markdown (Informal)
[LEAF: Language Learners’ English Essays and Feedback Corpus](https://aclanthology.org/2024.naacl-short.36/) (Behzad et al., NAACL 2024)
- LEAF: Language Learners’ English Essays and Feedback Corpus (Behzad et al., NAACL 2024)
ACL
- Shabnam Behzad, Omid Kashefi, and Swapna Somasundaran. 2024. LEAF: Language Learners’ English Essays and Feedback Corpus. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 2: Short Papers), pages 433–442, Mexico City, Mexico. Association for Computational Linguistics.