| CARVIEW |
Select Language
Data Curation Pipeline
Data Visualization
Please select a task.
3D-POPE Leaderboard: Evaluating Hallucination for 3D-LLMs
| 3D-POPE | Model | Precision | Recall | F1 Score | Accuracy | Yes (%) |
|---|---|---|---|---|---|---|
| Random | Random Baseline | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
| 3D-LLM | 50.03 | 99.88 | 66.67 | 50.07 | 99.81 | |
| 3D-VisTA | 50.12 | 53.58 | 51.79 | 49.66 | 53.95 | |
| LEO | 51.95 | 77.65 | 62.25 | 52.91 | 74.73 | |
| Ours zero-shot (Grounding) | 93.34 | 84.25 | 88.56 | 89.12 | 45.13 | |
| Popular | Random Baseline | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
| 3D-LLM | 49.97 | 99.88 | 66.61 | 49.94 | 99.94 | |
| 3D-VisTA | 47.40 | 51.88 | 49.54 | 49.49 | 52.30 | |
| LEO | 48.30 | 77.65 | 59.55 | 47.27 | 80.38 | |
| Ours zero-shot (Grounding) | 73.05 | 84.28 | 78.26 | 76.59 | 57.69 | |
| Adversarial | Random Baseline | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
| 3D-LLM | 49.97 | 99.88 | 66.61 | 49.94 | 99.94 | |
| 3D-VisTA | 48.28 | 54.39 | 51.15 | 51.14 | 52.99 | |
| LEO | 48.47 | 77.98 | 59.78 | 47.52 | 80.45 | |
| Ours zero-shot (Grounding) | 69.86 | 84.21 | 76.37 | 73.95 | 60.26 |
Data Scaling
Citation
@misc{yang2024_3D_GRAND,
title={3D-GRAND: A Million-Scale Dataset for 3D-LLMs with Better Grounding and Less Hallucination},
author={Jianing Yang and Xuweiyi Chen and Nikhil Madaan and Madhavan Iyengar and Shengyi Qian and David F. Fouhey and Joyce Chai},
year={2024},
eprint={2406.05132},
archivePrefix={arXiv},
primaryClass={cs.CV}
}