CARVIEW |
Select Language
HTTP/2 200
date: Thu, 24 Jul 2025 22:30:54 GMT
content-type: text/html; charset=UTF-8
cache-control: s-maxage=36000, max-age=5
last-modified: Thu, 24 Jul 2025 05:55:56 GMT
link: ; rel=preload; as=style,; rel=preload; as=style,; rel=preload; as=style,; rel=preload; as=style,; rel=preload; as=style,; rel=preload; as=style
strict-transport-security: max-age=31536000
content-security-policy: upgrade-insecure-requests
edge-cache-tag: CT-131528736306,CG-3298168043,P-691534,CW-187104649349,CW-187104649527,CW-187105507506,CW-189729484136,CW-190415809340,CW-191913064573,CW-191913064712,CW-191913080068,CW-191913080408,CW-191913080670,CW-191914485575,CW-191914485848,E-142751494144,E-142762480291,E-142762558863,E-143617032215,E-168591795996,E-182000650417,E-182007043681,E-182007308374,E-187267399945,E-187268190600,E-191724244992,E-191748641714,E-191757015191,E-191757745199,E-191757745212,E-191757922448,E-191757922456,E-191757922459,E-191795252125,E-191913064739,E-191913064788,E-191913064825,E-191913065836,E-191914486142,E-191914486457,E-191914488151,E-191914503720,E-191916206874,E-191916207449,E-191916207620,E-191917277727,E-191917277783,E-191917277866,E-191917560667,E-191917560701,MENU-154931019020,MENU-168587867317,PGS-ALL,SW-3,GC-143174116914,GC-165023483770,GC-187118171939,TS-142763766447
permissions-policy: true
referrer-policy: no-referrer-when-downgrade
x-content-type-options: nosniff
x-frame-options: SAMEORIGIN
x-hs-cache-config: BrowserCache-5s-EdgeCache-180s
x-hs-cache-control: s-maxage=36000, max-age=0
x-hs-cf-cache-status: HIT
x-hs-cfworker-meta: {"contentType":"BLOG_POST"}
x-hs-content-id: 131528736306
x-hs-hub-id: 691534
x-hs-prerendered: Thu, 24 Jul 2025 05:55:56 GMT
set-cookie: __cf_bm=landcUQwtuX63wn06y0B3lqjbKGIni.tj.WHoPkAoH4-1753396254-1.0.1.1-Qk7bvWLhuq0aTWWo5uC8_VWHM1Rh85d5ImtmxONS2ueZ5syq0N7TPYpqNgtg7m8eu1AgLcXB6WYUDBBtS3J61TtWM2QinAzOATFMs3XirQo; path=/; expires=Thu, 24-Jul-25 23:00:54 GMT; domain=.www.pythian.com; HttpOnly; Secure; SameSite=None
report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=AT0kR6%2FFIyS%2B4AEUtkKfHXNYsJp2mPzQYraPGQqu%2FLKBWWRIPPaLamQ47nmNxCSLE9ULIUDBEMVLRjlMM9WvTzzf2aeA1gRpZvVt3pW0nzTeme621vSgZdXTwiAspbyJeQ%3D%3D"}],"group":"cf-nel","max_age":604800}
nel: {"success_fraction":0.01,"report_to":"cf-nel","max_age":604800}
vary: Accept-Encoding
set-cookie: _cfuvid=Kt_kzSZ5lOzS16lIfLS5rsfeUD5u0KdLnC_6D5puv94-1753396254786-0.0.1.1-604800000; path=/; domain=.www.pythian.com; HttpOnly; Secure; SameSite=None
server: cloudflare
cf-ray: 9646dd5c0ded6f7a-BLR
content-encoding: gzip
alt-svc: h3=":443"; ma=86400
Google Cloud Dataproc in ETL pipeline - part 1 (logging)
Google Cloud Dataproc
, now generally available, provides access to fully managed Hadoop and Apache Spark clusters, and leverages open source data tools for querying, batch/stream processing, and at-scale machine learning. To get more technical information on the specifics of the platform, refer to Google’s original blog
post
and
product home page
.
Having access to fully managed Hadoop/Spark based technology and powerful Machine Learning Library (MLlib) as part of Google Cloud Platform makes perfect sense as it allows you to reuse existing code and helps many to overcome the fear of being “locked into” one specific vendor while taking a step into big data processing in the cloud. That said, I would still recommend evaluating Google Cloud Dataflow first while implementing new projects and processes for its efficiency, simplicity and semantic-rich analytics capabilities, especially around stream processing.
When Cloud Dataproc was first released to the public, it received positive reviews. Many blogs were written on the subject with
few
taking it through some “tough” challenges on its promise to deliver cluster startup in "less than 90 seconds”. In general the product was well received, with the overall consensus that it is well positioned against the AWS EMR offering.
Being able, in a matter of minutes, to start Spark Cluster without any knowledge of the Hadoop ecosystem and having access to a powerful interactive shell such as
Jupyter
or
Zeppelin
is no doubt a Data Scientist’s dream. But with extremely fast startup/shutdown, “by the minute” billing and widely adopted technology stack, it also appears to be a perfect candidate for a processing block in bigger ETL pipelines. Orchestration, workflow engine, and logging are all crucial aspects of such solutions and I am planning to publish a few blog entries as I go through evaluation of each of these areas starting with Logging in this blog.
Share this
Google Cloud Dataproc in ETL pipeline - part 1 (logging)
by Vladimir Stoyak on Feb 22, 2016 12:00:00 AM
Cloud Dataproc Logging
Cluster's system and daemon logs are accessible through cluster UIs as well as through SSH-ing to the cluster, but there is a much better way to do this. By default these logs are also pushed to Google Cloud Logging consolidating all logs in one place with flexible Log Viewer UI and filtering. One can even create custom log-based metrics and use these for baselining and/or alerting purposes. All cluster logs are aggregated under a "dataproc-hadoop” tag but “structPayload.filename” field can be used as a filter for specific log file. In addition to relying on Logs Viewer UI, there is a way to integrate specific log messages into Cloud Storage or BigQuery for analysis. Just to get an idea on what logs are available by default, I have exported all Cloud Dataproc messages into BigQuery and queried new table with the following query: SELECT structPayload.filename AS file_name, count(*) AS cnt FROM [dataproc_logs.dataproc_hadoop_20160217] WHERE metadata.labels.key='dataproc.googleapis.com/cluster_id' AND metadata.labels.value = 'cluster-2:205c03ea-6bea-4c80-bdca-beb6b9ffb0d6' GROUP BY file_name- hadoop-hdfs-namenode-cluster-2-m.log
- yarn-yarn-nodemanager-cluster-2-w-0.log
- container_1455740844290_0001_01_000004.stderr
- hadoop-hdfs-secondarynamenode-cluster-2-m.log
- hive-metastore.log
- hadoop-hdfs-datanode-cluster-2-w-1.log
- hive-server2.log
- container_1455740844290_0001_01_000001.stderr
- container_1455740844290_0001_01_000002.stderr
- hadoop-hdfs-datanode-cluster-2-w-0.log
- yarn-yarn-nodemanager-cluster-2-w-1.log
- yarn-yarn-resourcemanager-cluster-2-m.log
- container_1455740844290_0001_01_000003.stderr
- mapred-mapred-historyserver-cluster-2-m.log
Application Logging
You can submit a job to the cluster using Cloud Console, Cloud SDK or REST API. Cloud Dataproc automatically gathers driver (console) output from all the workers, and makes it available through Cloud Console . Logs from the job are also uploaded to the staging bucket specified when starting a cluster and can be accessed from there. Note: One thing I found confusing is that when referencing driver output directory in Cloud Dataproc staging bucket you need Cluster ID (dataproc-cluster-uuid), however it is not yet listed on Cloud Dataproc Console. Having this ID or a direct link to the directory available from the Cluster Overview page is especially critical when starting/stopping many clusters as part of scheduled jobs. One way to get dataproc-cluster-uuid and a few other useful references is to navigate from Cluster "Overview" section to "VM Instances" and then to click on Master or any worker node and scroll down to "Custom metadata” section. Indeed, you can also get it using " gcloud beta dataproc clusters describe <CLUSTER_NAME> |grep clusterUuid" command but it would be nice to have it available through the console in a first place. The job (driver) output however is currently dumped into console ONLY (refer to /etc/spark/conf/log4j.properties on master node) and although accessible through Dataproc Job interface, it is not currently available in Cloud Logging. The easiest way around this issue, which can be easily implemented as part of Cluster initialization actions, is to modify /etc/spark/conf/log4j.properties by replacing " log4j.rootCategory=INFO, console ” with " log4j.rootCategory=INFO, console, file ” and add the following appender: # Adding file appender log4j.appender.file=org.apache.log4j.RollingFileAppender log4j.appender.file.File=/var/log/spark/spark-log4j.log log4j.appender.file.layout=org.apache.log4j.PatternLayout log4j.appender.file.layout.conversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c: %m%n Existing Cloud Dataproc fluentd configuration will automatically tail through all files under /var/log/spark directory adding events into Cloud Logging and should automatically pick up messages going into /var/log/spark/spark-log4j.log . You can verify that logs from the job started to appear in Cloud Logging by firing up one of the examples provided with Cloud Dataproc and filtering Logs Viewer using the following rule: node.metadata.serviceName="dataproc.googleapis.com" structPayload.filename="spark-log4j.log" If after this change messages are still not appearing in Cloud Logging, try restarting fluentd daemon by running "/etc/init.d/google-fluentd restart” command on master node. Once changes are implemented and output is verified you can declare logger in your process as: import pyspark sc = pyspark.SparkContext() logger = sc._jvm.org.apache.log4j.Logger.getLogger(__name__) and submit the job redefining logging level (INFO by default) using "--driver-log-levels". Learn more here.Share this
- Technical Track (967)
- Oracle (413)
- MySQL (141)
- Cloud (128)
- Microsoft SQL Server (117)
- Open Source (90)
- Google Cloud (81)
- Microsoft Azure (63)
- Amazon Web Services (AWS) (58)
- Big Data (52)
- Google Cloud Platform (46)
- Cassandra (44)
- DevOps (41)
- Pythian (33)
- Linux (30)
- Database (26)
- Performance (25)
- Podcasts (25)
- Site Reliability Engineering (25)
- PostgreSQL (24)
- Oracle E-Business Suite (23)
- Oracle Database (22)
- Docker (21)
- DBA (20)
- Security (20)
- Exadata (18)
- MongoDB (18)
- Oracle Cloud Infrastructure (OCI) (18)
- Oracle Exadata (18)
- Automation (17)
- Hadoop (16)
- Oracleebs (16)
- Amazon RDS (15)
- Ansible (15)
- Snowflake (15)
- ASM (13)
- Artificial Intelligence (AI) (13)
- BigQuery (13)
- Replication (13)
- Advanced Analytics (12)
- Data (12)
- GenAI (12)
- Kubernetes (12)
- LLM (12)
- Authentication, SSO and MFA (11)
- Cloud Migration (11)
- Machine Learning (11)
- Rman (11)
- Datascape Podcast (10)
- Monitoring (10)
- Oracle Applications (10)
- Apache Cassandra (9)
- ChatGPT (9)
- Data Guard (9)
- Infrastructure (9)
- Python (9)
- Series (9)
- AWR (8)
- High Availability (8)
- Oracle EBS (8)
- Oracle Enterprise Manager (OEM) (8)
- Percona (8)
- Apache Beam (7)
- Data Governance (7)
- Innodb (7)
- Microsoft Azure SQL Database (7)
- Migration (7)
- Myrocks (7)
- Performance Tuning (7)
- Data Enablement (6)
- Data Visualization (6)
- Database Performance (6)
- Oracle Enterprise Manager (6)
- Orchestrator (6)
- RocksDB (6)
- Serverless (6)
- Azure Data Factory (5)
- Azure Synapse Analytics (5)
- Covid-19 (5)
- Disaster Recovery (5)
- Generative AI (5)
- Google BigQuery (5)
- Mariadb (5)
- Microsoft (5)
- Scala (5)
- Windows (5)
- Xtrabackup (5)
- Airflow (4)
- Analytics (4)
- Apex (4)
- Cloud Security (4)
- Cloud Spanner (4)
- CockroachDB (4)
- Data Management (4)
- Data Pipeline (4)
- Data Security (4)
- Data Strategy (4)
- Database Administrator (4)
- Database Management (4)
- Database Migration (4)
- Dataflow (4)
- Fusion Middleware (4)
- Google (4)
- Oracle Autonomous Database (Adb) (4)
- Oracle Cloud (4)
- Prometheus (4)
- Redhat (4)
- Slob (4)
- Ssl (4)
- Terraform (4)
- Amazon Relational Database Service (Rds) (3)
- Apache Kafka (3)
- Apexexport (3)
- Aurora (3)
- Business Intelligence (3)
- Cloud Armor (3)
- Cloud Database (3)
- Cloud FinOps (3)
- Cosmos Db (3)
- Data Analytics (3)
- Data Integration (3)
- Database Monitoring (3)
- Database Troubleshooting (3)
- Database Upgrade (3)
- Databases (3)
- Dataops (3)
- Digital Transformation (3)
- ERP (3)
- Google Chrome (3)
- Google Cloud Sql (3)
- Google Workspace (3)
- Graphite (3)
- Heterogeneous Database Migration (3)
- Liquibase (3)
- Oracle Data Guard (3)
- Oracle Live Sql (3)
- Oracle Rac (3)
- Perl (3)
- Rdbms (3)
- Remote Teams (3)
- S3 (3)
- SAP (3)
- Tensorflow (3)
- Adf (2)
- Adop (2)
- Amazon Data Migration Service (2)
- Amazon Ec2 (2)
- Amazon S3 (2)
- Apache Flink (2)
- Ashdump (2)
- Atp (2)
- Autonomous (2)
- Awr Data Mining (2)
- Cloud Cost Optimization (2)
- Cloud Data Fusion (2)
- Cloud Hosting (2)
- Cloud Infrastructure (2)
- Cloud Shell (2)
- Cloud Sql (2)
- Conferences (2)
- Cosmosdb (2)
- Cost Management (2)
- Cyber Security (2)
- Data Analysis (2)
- Data Discovery (2)
- Data Engineering (2)
- Data Migration (2)
- Data Modeling (2)
- Data Quality (2)
- Data Streaming (2)
- Data Warehouse (2)
- Database Consulting (2)
- Database Migrations (2)
- Dataguard (2)
- Docker-Composer (2)
- Enterprise Data Platform (EDP) (2)
- Etl (2)
- Events (2)
- Gemini (2)
- Health Check (2)
- Infrastructure As Code (2)
- Innodb Cluster (2)
- Innodb File Structure (2)
- Innodb Group Replication (2)
- NLP (2)
- Neo4J (2)
- Nosql (2)
- Open Source Database (2)
- Oracle Datase (2)
- Oracle Extended Manager (Oem) (2)
- Oracle Flashback (2)
- Oracle Forms (2)
- Oracle Installation (2)
- Oracle Io Testing (2)
- Podcast (2)
- Power Bi (2)
- Redshift (2)
- Remote DBA (2)
- Remote Sre (2)
- SAP HANA Cloud (2)
- Single Sign-On (2)
- Webinars (2)
- X5 (2)
- Actifio (1)
- Adf Custom Email (1)
- Adrci (1)
- Advanced Data Services (1)
- Afd (1)
- Ahf (1)
- Alloydb (1)
- Amazon (1)
- Amazon Athena (1)
- Amazon Aurora Backtrack (1)
- Amazon Efs (1)
- Amazon Redshift (1)
- Amazon Sagemaker (1)
- Amazon Vpc Flow Logs (1)
- Analysis (1)
- Analytical Models (1)
- Anisble (1)
- Anthos (1)
- Apache (1)
- Apache Nifi (1)
- Apache Spark (1)
- Application Migration (1)
- Ash (1)
- Asmlib (1)
- Atlas CLI (1)
- Awr Mining (1)
- Aws Lake Formation (1)
- Azure Data Lake (1)
- Azure Data Lake Analytics (1)
- Azure Data Lake Store (1)
- Azure Data Migration Service (1)
- Azure OpenAI (1)
- Azure Sql Data Warehouse (1)
- Batches In Cassandra (1)
- Business Insights (1)
- Chown (1)
- Chrome Security (1)
- Cloud Browser (1)
- Cloud Build (1)
- Cloud Consulting (1)
- Cloud Data Warehouse (1)
- Cloud Database Management (1)
- Cloud Dataproc (1)
- Cloud Foundry (1)
- Cloud Manager (1)
- Cloud Networking (1)
- Cloud SQL Replica (1)
- Cloud Scheduler (1)
- Cloud Services (1)
- Cloud Strategies (1)
- Compliance (1)
- Conversational AI (1)
- DAX (1)
- Data Analytics Platform (1)
- Data Box (1)
- Data Classification (1)
- Data Cleansing (1)
- Data Encryption (1)
- Data Estate (1)
- Data Flow Management (1)
- Data Insights (1)
- Data Integrity (1)
- Data Lake (1)
- Data Leader (1)
- Data Lifecycle Management (1)
- Data Lineage (1)
- Data Masking (1)
- Data Mesh (1)
- Data Migration Assistant (1)
- Data Migration Service (1)
- Data Mining (1)
- Data Monetization (1)
- Data Policy (1)
- Data Profiling (1)
- Data Protection (1)
- Data Retention (1)
- Data Safe (1)
- Data Sheets (1)
- Data Summit (1)
- Data Vault (1)
- Data Warehouse Modernization (1)
- Database Auditing (1)
- Database Consultant (1)
- Database Link (1)
- Database Modernization (1)
- Database Provisioning (1)
- Database Provisioning Failed (1)
- Database Replication (1)
- Database Scaling (1)
- Database Schemas (1)
- Database Security (1)
- Databricks (1)
- Datascape 59 (1)
- DeepSeek (1)
- Duet AI (1)
- Edp (1)
- Gcp Compute (1)
- Gcp-Spanner (1)
- Global Analytics (1)
- Google Analytics (1)
- Google Cloud Architecture Framework (1)
- Google Cloud Data Services (1)
- Google Cloud Partner (1)
- Google Cloud Spanner (1)
- Google Cloud VMware Engine (1)
- Google Compute Engine (1)
- Google Dataflow (1)
- Google Datalab (1)
- Google Grab And Go (1)
- Graph Algorithms (1)
- Graph Databases (1)
- Graph Inferences (1)
- Graph Theory (1)
- GraphQL (1)
- Healthcheck (1)
- Information (1)
- Infrastructure As A Code (1)
- Innobackupex (1)
- Innodb Concurrency (1)
- Innodb Flush Method (1)
- It Industry (1)
- Kubeflow (1)
- LMSYS Chatbot Arena (1)
- Linux Host Monitoring (1)
- Linux Storage Appliance (1)
- Looker (1)
- MMLU (1)
- Managed Services (1)
- Migrate (1)
- Migrating Ssis Catalog (1)
- Migration Checklist (1)
- MongoDB Atlas (1)
- MongoDB Compass (1)
- Newsroom (1)
- Nifi (1)
- OPEX (1)
- ORAPKI (1)
- Odbcs (1)
- Odbs (1)
- On-Premises (1)
- Ora-01852 (1)
- Ora-7445 (1)
- Oracle Cursor (1)
- Oracle Database Appliance (1)
- Oracle Database Se2 (1)
- Oracle Database Standard Edition 2 (1)
- Oracle Database Upgrade (1)
- Oracle Database@Google Cloud (1)
- Oracle Exadata Smart Scan (1)
- Oracle Licensing (1)
- Oracle Linux Virtualization Manager (1)
- Oracle Oda (1)
- Oracle Openworld (1)
- Oracle Parallelism (1)
- Oracle RMAN (1)
- Oracle Rdbms (1)
- Oracle Real Application Clusters (1)
- Oracle Reports (1)
- Oracle Security (1)
- Oracle Wallet (1)
- PDB (1)
- Perfomrance (1)
- Performance Schema (1)
- Policy (1)
- Prompt Engineering (1)
- Public Cloud (1)
- Pythian News (1)
- Rdb (1)
- Replication Compatibility (1)
- Replication Error (1)
- Retail (1)
- Scaling Ir (1)
- Securing Sql Server (1)
- Security Compliance (1)
- Serverless Computing (1)
- Sso (1)
- Tenserflow (1)
- Teradata (1)
- Vertex AI (1)
- Vertica (1)
- Videos (1)
- Workspace Security (1)
- Xbstream (1)
- July 2025 (3)
- June 2025 (1)
- May 2025 (3)
- March 2025 (2)
- February 2025 (1)
- January 2025 (2)
- December 2024 (1)
- October 2024 (2)
- September 2024 (7)
- August 2024 (4)
- July 2024 (2)
- June 2024 (6)
- May 2024 (3)
- April 2024 (2)
- February 2024 (1)
- January 2024 (11)
- December 2023 (10)
- November 2023 (11)
- October 2023 (10)
- September 2023 (8)
- August 2023 (6)
- July 2023 (2)
- June 2023 (13)
- May 2023 (4)
- April 2023 (6)
- March 2023 (10)
- February 2023 (6)
- January 2023 (5)
- December 2022 (10)
- November 2022 (10)
- October 2022 (10)
- September 2022 (13)
- August 2022 (16)
- July 2022 (12)
- June 2022 (13)
- May 2022 (11)
- April 2022 (4)
- March 2022 (5)
- February 2022 (4)
- January 2022 (14)
- December 2021 (16)
- November 2021 (11)
- October 2021 (6)
- September 2021 (11)
- August 2021 (6)
- July 2021 (9)
- June 2021 (4)
- May 2021 (8)
- April 2021 (16)
- March 2021 (16)
- February 2021 (6)
- January 2021 (12)
- December 2020 (12)
- November 2020 (17)
- October 2020 (11)
- September 2020 (10)
- August 2020 (11)
- July 2020 (13)
- June 2020 (6)
- May 2020 (9)
- April 2020 (18)
- March 2020 (21)
- February 2020 (13)
- January 2020 (15)
- December 2019 (10)
- November 2019 (11)
- October 2019 (12)
- September 2019 (16)
- August 2019 (15)
- July 2019 (10)
- June 2019 (16)
- May 2019 (20)
- April 2019 (21)
- March 2019 (14)
- February 2019 (18)
- January 2019 (18)
- December 2018 (5)
- November 2018 (16)
- October 2018 (12)
- September 2018 (20)
- August 2018 (27)
- July 2018 (31)
- June 2018 (34)
- May 2018 (28)
- April 2018 (27)
- March 2018 (17)
- February 2018 (8)
- January 2018 (20)
- December 2017 (14)
- November 2017 (4)
- October 2017 (1)
- September 2017 (3)
- August 2017 (5)
- July 2017 (4)
- June 2017 (2)
- May 2017 (7)
- April 2017 (7)
- March 2017 (8)
- February 2017 (8)
- January 2017 (5)
- December 2016 (3)
- November 2016 (4)
- October 2016 (8)
- September 2016 (9)
- August 2016 (10)
- July 2016 (9)
- June 2016 (8)
- May 2016 (13)
- April 2016 (16)
- March 2016 (13)
- February 2016 (11)
- January 2016 (6)
- December 2015 (11)
- November 2015 (11)
- October 2015 (5)
- September 2015 (16)
- August 2015 (4)
- July 2015 (1)
- June 2015 (3)
- May 2015 (6)
- April 2015 (5)
- March 2015 (5)
- February 2015 (4)
- January 2015 (3)
- December 2014 (7)
- October 2014 (4)
- September 2014 (6)
- August 2014 (6)
- July 2014 (16)
- June 2014 (7)
- May 2014 (6)
- April 2014 (5)
- March 2014 (4)
- February 2014 (10)
- January 2014 (6)
- December 2013 (8)
- November 2013 (12)
- October 2013 (9)
- September 2013 (6)
- August 2013 (7)
- July 2013 (9)
- June 2013 (7)
- May 2013 (7)
- April 2013 (4)
- March 2013 (7)
- February 2013 (4)
- January 2013 (4)
- December 2012 (6)
- November 2012 (8)
- October 2012 (9)
- September 2012 (3)
- August 2012 (5)
- July 2012 (5)
- June 2012 (7)
- May 2012 (11)
- April 2012 (1)
- March 2012 (8)
- February 2012 (1)
- January 2012 (6)
- December 2011 (8)
- November 2011 (5)
- October 2011 (9)
- September 2011 (6)
- August 2011 (4)
- July 2011 (1)
- June 2011 (1)
- May 2011 (5)
- April 2011 (2)
- February 2011 (2)
- January 2011 (2)
- December 2010 (1)
- November 2010 (7)
- October 2010 (3)
- September 2010 (8)
- August 2010 (2)
- July 2010 (4)
- June 2010 (7)
- May 2010 (2)
- April 2010 (1)
- March 2010 (3)
- February 2010 (3)
- January 2010 (2)
- November 2009 (6)
- October 2009 (6)
- August 2009 (3)
- July 2009 (3)
- June 2009 (3)
- May 2009 (2)
- April 2009 (8)
- March 2009 (6)
- February 2009 (4)
- January 2009 (3)
- November 2008 (3)
- October 2008 (7)
- September 2008 (6)
- August 2008 (9)
- July 2008 (9)
- June 2008 (9)
- May 2008 (9)
- April 2008 (8)
- March 2008 (4)
- February 2008 (3)
- January 2008 (3)
- December 2007 (2)
- November 2007 (7)
- October 2007 (1)
- August 2007 (4)
- July 2007 (3)
- June 2007 (8)
- May 2007 (4)
- April 2007 (2)
- March 2007 (2)
- February 2007 (5)
- January 2007 (8)
- December 2006 (1)
- November 2006 (3)
- October 2006 (4)
- September 2006 (3)
- July 2006 (1)
- May 2006 (2)
- April 2006 (1)
- July 2005 (1)
No Comments Yet
Let us know what you think