CARVIEW |
- About FIRST
- Mission Statement
- Strategy Framework
- History
- Sustainable Development Goals
- Organization
- FIRST Policies
- Anti-Corruption Policy
- Antitrust Policy
- Bylaws
- Board duties
- Bug Bounty Program
- Code of Conduct
- Conflict of Interest Policy
- Document Record Retention and Destruction Policy
- FIRST Press Policy
- General Event Registration Refund Policy
- Guidelines for Site Selection for all FIRST events
- Identity & Logo Usage
- Mailing List Policy
- Media Policy
- Privacy Policy
- Registration Terms & Conditions
- Services Terms of Use
- Standards Policy
- Statement on Diversity & Inclusion
- Translation Policy
- Travel Policy
- Uniform IPR Policy
- Whistleblower Protection Policy
- Partnerships
- Newsroom
- Procurement
- Jobs
- Contact
- Membership
- Initiatives
- Special Interest Groups (SIGs)
- SIGs Framework
- Academic Security SIG
- AI Security SIG
- Automation SIG
- Cybersecurity Communications SIG
- Common Vulnerability Scoring System (CVSS-SIG)
- CSIRT Framework Development SIG
- Cyber Insurance SIG
- Cyber Threat Intelligence SIG
- Curriculum
- Introduction
- Introduction to CTI as a General topic
- Methods and Methodology
- Priority Intelligence Requirement (PIR)
- Source Evaluation and Information Reliability
- Machine and Human Analysis Techniques (and Intelligence Cycle)
- Threat Modelling
- Training
- Standards
- Glossary
- Communicating Uncertainties in CTI Reporting
- Webinars and Online Training
- Building a CTI program and team
- Curriculum
- Detection Engineering & Threat Hunting SIG
- Digital Safety SIG
- DNS Abuse SIG
- Stakeholder Advice
- Detection
- Cache Poisoning
- Creation of Malicious Subdomains Under Dynamic DNS Providers
- DGA Domains
- DNS As a Vector for DoS
- DNS Beacons - C2 Communication
- DNS Rebinding
- DNS Server Compromise
- DNS Tunneling
- DoS Against the DNS
- Domain Name Compromise
- Dynamic DNS (as obfuscation technique)
- Fast Flux (as obfuscation technique)
- Infiltration and exfiltration via the DNS
- Lame Delegations
- Local Resolver Hijacking
- Malicious registration of (effective) second level domains
- On-path DNS Attack
- Stub Resolver Hijacking
- Detection
- Code of Conduct & Other Policies
- Examples of DNS Abuse
- Stakeholder Advice
- Ethics SIG
- Exploit Prediction Scoring System (EPSS)
- FIRST Multi-Stakeholder Ransomware SIG
- Human Factors in Security SIG
- Industrial Control Systems SIG (ICS-SIG)
- Information Exchange Policy SIG (IEP-SIG)
- Information Sharing SIG
- Law Enforcement SIG
- Malware Analysis SIG
- Metrics SIG
- NETSEC SIG
- Public Policy SIG
- PSIRT SIG
- Red Team SIG
- Security Lounge SIG
- Security Operations Center SIG
- Threat Intel Coalition SIG
- Traffic Light Protocol (TLP-SIG)
- Transportation and Mobility SIG
- Vulnerability Coordination
- Vulnerability Reporting and Data eXchange SIG (VRDX-SIG)
- Women of FIRST
- CCB Initiatives
- FIRST CORE
- Internet Governance
- IR Database
- Fellowship Program
- Mentorship Program
- IR Hall of Fame
- Victim Notification
- Volunteers at FIRST
- Previous Activities
- Special Interest Groups (SIGs)
- Standards & Publications
- Events
- Education
- Blog
DNS Abuse Detection: DNS server compromise
Definition
DNS server compromise involves unauthorized control over, or access to, a legitimate DNS server or its records, enabling adversaries to redirect traffic, manipulate queries, force the server to return malicious IP addresses, and possibly launch several other cyberattacks.
Advice
DNS server compromises can be detected by manually checking server configurations and verifying that they are as intended. If automated configuration is used, then comparing to the source configurations can also be useful.
Checking server logs for unusual or unauthorized access from external locations can also indicate a server compromise.
A properly deployed IDR (Intrusion Detection and Response) or IDP (Intrusion Detection and Prevention) system can also detect server compromises. There are many options available for evaluation.
Automated checking of significant DNS records, e.g. parent domain A records and NS records, can show that a compromise may have taken place.
Example
Global DNS Hijacking Campaign: DNS Record Manipulation at Scale
Details from Google Security about potentially state-sponsored hijacking via compromised DNS administration panels access through proxy servers.
Potential Resources
- DNS configurations and configuration build sources
- DNS resolver logs
- Server access logs
- DNS Abuse SIG
- Stakeholder Advice
- Detection
- Cache Poisoning
- Creation of Malicious Subdomains Under Dynamic DNS Providers
- DGA Domains
- DNS As a Vector for DoS
- DNS Beacons - C2 Communication
- DNS Rebinding
- DNS Server Compromise
- DNS Tunneling
- DoS Against the DNS
- Domain Name Compromise
- Dynamic DNS (as obfuscation technique)
- Fast Flux (as obfuscation technique)
- Infiltration and exfiltration via the DNS
- Lame Delegations
- Local Resolver Hijacking
- Malicious registration of (effective) second level domains
- On-path DNS Attack
- Stub Resolver Hijacking
- Detection
- Code of Conduct & Other Policies
- Examples of DNS Abuse
- Stakeholder Advice