CARVIEW |
Select Language
HTTP/2 302
server: nginx
date: Fri, 08 Aug 2025 05:26:39 GMT
content-type: text/plain; charset=utf-8
content-length: 0
x-archive-redirect-reason: found capture at 20100206142351
location: https://web.archive.org/web/20100206142351/https://github.com/cardmagic/classifier
server-timing: captures_list;dur=0.703456, exclusion.robots;dur=0.022577, exclusion.robots.policy;dur=0.010859, esindex;dur=0.012930, cdx.remote;dur=6.112769, LoadShardBlock;dur=596.065443, PetaboxLoader3.datanode;dur=231.851941, PetaboxLoader3.resolve;dur=313.289408
x-app-server: wwwb-app217
x-ts: 302
x-tr: 633
server-timing: TR;dur=0,Tw;dur=0,Tc;dur=0
set-cookie: wb-p-SERVER=wwwb-app217; path=/
x-location: All
x-rl: 0
x-na: 0
x-page-cache: MISS
server-timing: MISS
x-nid: DigitalOcean
referrer-policy: no-referrer-when-downgrade
permissions-policy: interest-cohort=()
HTTP/2 200
server: nginx
date: Fri, 08 Aug 2025 05:26:39 GMT
content-type: text/html; charset=utf-8
x-archive-orig-server: nginx/0.7.61
x-archive-orig-date: Sat, 06 Feb 2010 14:23:51 GMT
x-archive-orig-connection: close
x-archive-orig-status: 200 OK
x-archive-orig-etag: "dc6ba04a7fbf4c3d163300c826c60f37"
x-archive-orig-x-runtime: 167ms
x-archive-orig-content-length: 27375
x-archive-orig-cache-control: private, max-age=0, must-revalidate
x-archive-guessed-content-type: text/html
x-archive-guessed-charset: utf-8
memento-datetime: Sat, 06 Feb 2010 14:23:51 GMT
link: ; rel="original", ; rel="timemap"; type="application/link-format", ; rel="timegate", ; rel="first memento"; datetime="Sun, 13 Sep 2009 03:59:04 GMT", ; rel="prev memento"; datetime="Wed, 06 Jan 2010 12:38:40 GMT", ; rel="memento"; datetime="Sat, 06 Feb 2010 14:23:51 GMT", ; rel="next memento"; datetime="Mon, 21 Jun 2010 13:34:17 GMT", ; rel="last memento"; datetime="Tue, 29 Apr 2025 02:13:07 GMT"
content-security-policy: default-src 'self' 'unsafe-eval' 'unsafe-inline' data: blob: archive.org web.archive.org web-static.archive.org wayback-api.archive.org athena.archive.org analytics.archive.org pragma.archivelab.org wwwb-events.archive.org
x-archive-src: 51_14_20100206133815_crawl102-c/51_14_20100206142335_crawl101.arc.gz
server-timing: captures_list;dur=0.755165, exclusion.robots;dur=0.026681, exclusion.robots.policy;dur=0.012865, esindex;dur=0.013545, cdx.remote;dur=13.371456, LoadShardBlock;dur=210.747413, PetaboxLoader3.datanode;dur=82.790570, PetaboxLoader3.resolve;dur=221.769882, load_resource;dur=126.410002
x-app-server: wwwb-app217
x-ts: 200
x-tr: 409
server-timing: TR;dur=0,Tw;dur=0,Tc;dur=0
x-location: All
x-rl: 0
x-na: 0
x-page-cache: MISS
server-timing: MISS
x-nid: DigitalOcean
referrer-policy: no-referrer-when-downgrade
permissions-policy: interest-cohort=()
content-encoding: gzip
cardmagic's classifier at master - GitHub
cardmagic / classifier
- Source
- Commits
- Network (18)
- Issues (0)
- Downloads (0)
- Wiki (1)
- Graphs
-
Branch:
master
click here to add a description
click here to add a homepage
-
Branches (1)
- master ✓
- Tags (0)

cmcbride (author)
Sun Jan 20 04:00:06 -0800 2008
name | age | message | |
---|---|---|---|
![]() |
LICENSE | Thu Feb 02 08:45:14 -0800 2006 | Adding files git-svn-id: https://classifier.rub... [cardmagic] |
![]() |
README | Sun Jan 20 04:00:06 -0800 2008 | added Cameron as author, Rakefile version bump ... [cmcbride] |
![]() |
Rakefile | Sun Jan 20 04:00:06 -0800 2008 | added Cameron as author, Rakefile version bump ... [cmcbride] |
![]() |
bin/ | Sat Sep 22 16:13:02 -0700 2007 | minor tweaks so that LSI plays well with modern... [cmcbride] |
![]() |
install.rb | Sat Sep 22 16:13:02 -0700 2007 | minor tweaks so that LSI plays well with modern... [cmcbride] |
![]() |
lib/ | Sat Sep 22 16:13:02 -0700 2007 | minor tweaks so that LSI plays well with modern... [cmcbride] |
![]() |
test/ | Thu Feb 02 08:45:14 -0800 2006 | Adding files git-svn-id: https://classifier.rub... [cardmagic] |
README
== Welcome to Classifier Classifier is a general module to allow Bayesian and other types of classifications. == Download * https://rubyforge.org/projects/classifier * gem install classifier * svn co https://rufy.com/svn/classifier/trunk == Dependencies If you install Classifier from source, you'll need to install Martin Porter's stemmer algorithm with RubyGems as follows: gem install stemmer If you would like to speed up LSI classification by at least 10x, please install the following libraries: GNU GSL:: https://www.gnu.org/software/gsl rb-gsl:: https://rb-gsl.rubyforge.org Notice that LSI will work without these libraries, but as soon as they are installed, Classifier will make use of them. No configuration changes are needed, we like to keep things ridiculously easy for you. == Bayes A Bayesian classifier by Lucas Carlson. Bayesian Classifiers are accurate, fast, and have modest memory requirements. === Usage require 'classifier' b = Classifier::Bayes.new 'Interesting', 'Uninteresting' b.train_interesting "here are some good words. I hope you love them" b.train_uninteresting "here are some bad words, I hate you" b.classify "I hate bad words and you" # returns 'Uninteresting' require 'madeleine' m = SnapshotMadeleine.new("bayes_data") { Classifier::Bayes.new 'Interesting', 'Uninteresting' } m.system.train_interesting "here are some good words. I hope you love them" m.system.train_uninteresting "here are some bad words, I hate you" m.take_snapshot m.system.classify "I love you" # returns 'Interesting' Using Madeleine, your application can persist the learned data over time. === Bayesian Classification * https://www.process.com/precisemail/bayesian_filtering.htm * https://en.wikipedia.org/wiki/Bayesian_filtering * https://www.paulgraham.com/spam.html == LSI A Latent Semantic Indexer by David Fayram. Latent Semantic Indexing engines are not as fast or as small as Bayesian classifiers, but are more flexible, providing fast search and clustering detection as well as semantic analysis of the text that theoretically simulates human learning. === Usage require 'classifier' lsi = Classifier::LSI.new strings = [ ["This text deals with dogs. Dogs.", :dog], ["This text involves dogs too. Dogs! ", :dog], ["This text revolves around cats. Cats.", :cat], ["This text also involves cats. Cats!", :cat], ["This text involves birds. Birds.",:bird ]] strings.each {|x| lsi.add_item x.first, x.last} lsi.search("dog", 3) # returns => ["This text deals with dogs. Dogs.", "This text involves dogs too. Dogs! ", # "This text also involves cats. Cats!"] lsi.find_related(strings[2], 2) # returns => ["This text revolves around cats. Cats.", "This text also involves cats. Cats!"] lsi.classify "This text is also about dogs!" # returns => :dog Please see the Classifier::LSI documentation for more information. It is possible to index, search and classify with more than just simple strings. === Latent Semantic Indexing * https://www.c2.com/cgi/wiki?LatentSemanticIndexing * https://www.chadfowler.com/index.cgi/Computing/LatentSemanticIndexing.rdoc * https://en.wikipedia.org/wiki/Latent_semantic_analysis == Authors * Lucas Carlson (mailto:lucas@rufy.com) * David Fayram II (mailto:dfayram@gmail.com) * Cameron McBride (mailto:cameron.mcbride@gmail.com) This library is released under the terms of the GNU LGPL. See LICENSE for more details.