CARVIEW |
Select Language
HTTP/2 200
content-type: application/octet-stream
x-guploader-uploadid: ABgVH89SryA-JnKPrUoGbFQ5SdfZP_ZyhXLDpMS98Ob8vqcb6bjJatKh96P0UYEF-o8eU4Nu
expires: Fri, 18 Jul 2025 04:09:34 GMT
date: Fri, 18 Jul 2025 03:09:34 GMT
cache-control: public, max-age=3600
last-modified: Fri, 16 Aug 2024 09:16:02 GMT
etag: "f099dc70ba73a3026642fe9a0512e414"
x-goog-generation: 1723799762788397
x-goog-metageneration: 1
x-goog-stored-content-encoding: identity
x-goog-stored-content-length: 739846
x-goog-hash: crc32c=WheNUg==
x-goog-hash: md5=8JnccLpzowJmQv6aBRLkFA==
x-goog-storage-class: MULTI_REGIONAL
accept-ranges: bytes
content-length: 739846
server: UploadServer
alt-svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "DweYe9FcbMK_"
},
"source": [
"##### Copyright 2018 The TensorFlow Authors.\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"cellView": "form",
"execution": {
"iopub.execute_input": "2024-08-16T07:37:52.034458Z",
"iopub.status.busy": "2024-08-16T07:37:52.033883Z",
"iopub.status.idle": "2024-08-16T07:37:52.037637Z",
"shell.execute_reply": "2024-08-16T07:37:52.037019Z"
},
"id": "AVV2e0XKbJeX"
},
"outputs": [],
"source": [
"#@title Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# https://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "sZfSvVcDo6GQ"
},
"source": [
"# Load text"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "giK0nMbZFnoR"
},
"source": [
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "dwlfPb11GH8J"
},
"source": [
"This tutorial demonstrates two ways to load and preprocess text.\n",
"\n",
"- First, you will use Keras utilities and preprocessing layers. These include `tf.keras.utils.text_dataset_from_directory` to turn data into a `tf.data.Dataset` and `tf.keras.layers.TextVectorization` for data standardization, tokenization, and vectorization. If you are new to TensorFlow, you should start with these.\n",
"- Then, you will use lower-level utilities like `tf.data.TextLineDataset` to load text files, `tf.lookup` for custom in-model lookup tables, and [TensorFlow Text](https://www.tensorflow.org/text) APIs, such as `text.UnicodeScriptTokenizer` and `text.case_fold_utf8`, to preprocess the data for finer-grain control."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:37:52.040916Z",
"iopub.status.busy": "2024-08-16T07:37:52.040707Z",
"iopub.status.idle": "2024-08-16T07:38:20.049731Z",
"shell.execute_reply": "2024-08-16T07:38:20.048732Z"
},
"id": "sa6IKWvADqH7"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting tensorflow-text==2.13.*\r\n",
" Downloading tensorflow_text-2.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (2.0 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: tensorflow-hub>=0.8.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-text==2.13.*) (0.16.1)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting tensorflow<2.14,>=2.13.0 (from tensorflow-text==2.13.*)\r\n",
" Downloading tensorflow-2.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (3.4 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: absl-py>=1.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2.1.0)\r\n",
"Requirement already satisfied: astunparse>=1.6.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (1.6.3)\r\n",
"Requirement already satisfied: flatbuffers>=23.1.21 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (24.3.25)\r\n",
"Collecting gast<=0.4.0,>=0.2.1 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Downloading gast-0.4.0-py3-none-any.whl.metadata (1.1 kB)\r\n",
"Requirement already satisfied: google-pasta>=0.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (0.2.0)\r\n",
"Requirement already satisfied: grpcio<2.0,>=1.24.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (1.66.0rc3)\r\n",
"Requirement already satisfied: h5py>=2.9.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.11.0)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting keras<2.14,>=2.13.1 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Downloading keras-2.13.1-py3-none-any.whl.metadata (2.4 kB)\r\n",
"Requirement already satisfied: libclang>=13.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (18.1.1)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting numpy<=1.24.3,>=1.22 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Downloading numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.metadata (5.6 kB)\r\n",
"Requirement already satisfied: opt-einsum>=2.3.2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.3.0)\r\n",
"Requirement already satisfied: packaging in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (24.1)\r\n",
"Requirement already satisfied: protobuf!=4.21.0,!=4.21.1,!=4.21.2,!=4.21.3,!=4.21.4,!=4.21.5,<5.0.0dev,>=3.20.3 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.20.3)\r\n",
"Requirement already satisfied: setuptools in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (72.2.0)\r\n",
"Requirement already satisfied: six>=1.12.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (1.16.0)\r\n",
"Collecting tensorboard<2.14,>=2.13 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Downloading tensorboard-2.13.0-py3-none-any.whl.metadata (1.8 kB)\r\n",
"Collecting tensorflow-estimator<2.14,>=2.13.0 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Downloading tensorflow_estimator-2.13.0-py2.py3-none-any.whl.metadata (1.3 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: termcolor>=1.1.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2.4.0)\r\n",
"Collecting typing-extensions<4.6.0,>=3.6.6 (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Downloading typing_extensions-4.5.0-py3-none-any.whl.metadata (8.5 kB)\r\n",
"Requirement already satisfied: wrapt>=1.11.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (1.16.0)\r\n",
"Requirement already satisfied: tensorflow-io-gcs-filesystem>=0.23.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (0.37.1)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Requirement already satisfied: tf-keras>=2.14.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorflow-hub>=0.8.0->tensorflow-text==2.13.*) (2.17.0)\r\n",
"Requirement already satisfied: wheel<1.0,>=0.23.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from astunparse>=1.6.0->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (0.43.0)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting google-auth<3,>=1.6.3 (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached google_auth-2.33.0-py2.py3-none-any.whl.metadata (4.7 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached google_auth_oauthlib-1.0.0-py2.py3-none-any.whl.metadata (2.7 kB)\r\n",
"Requirement already satisfied: markdown>=2.6.8 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.6)\r\n",
"Requirement already satisfied: requests<3,>=2.21.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2.32.3)\r\n",
"Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (0.7.2)\r\n",
"Requirement already satisfied: werkzeug>=1.0.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.0.3)\r\n",
"INFO: pip is looking at multiple versions of tf-keras to determine which version is compatible with other requirements. This could take a while.\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting tf-keras>=2.14.1 (from tensorflow-hub>=0.8.0->tensorflow-text==2.13.*)\r\n",
" Downloading tf_keras-2.16.0-py3-none-any.whl.metadata (1.6 kB)\r\n",
" Downloading tf_keras-2.15.1-py3-none-any.whl.metadata (1.7 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Downloading tf_keras-2.15.0-py3-none-any.whl.metadata (1.6 kB)\r\n",
"Requirement already satisfied: cachetools<6.0,>=2.0.0 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (5.4.0)\r\n",
"Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached pyasn1_modules-0.4.0-py3-none-any.whl.metadata (3.4 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached rsa-4.9-py3-none-any.whl.metadata (4.2 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl.metadata (11 kB)\r\n",
"Requirement already satisfied: importlib-metadata>=4.4 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from markdown>=2.6.8->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (8.2.0)\r\n",
"Requirement already satisfied: charset-normalizer<4,>=2 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.3.2)\r\n",
"Requirement already satisfied: idna<4,>=2.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.7)\r\n",
"Requirement already satisfied: urllib3<3,>=1.21.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2.2.2)\r\n",
"Requirement already satisfied: certifi>=2017.4.17 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from requests<3,>=2.21.0->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2024.7.4)\r\n",
"Requirement already satisfied: MarkupSafe>=2.1.1 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from werkzeug>=1.0.1->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (2.1.5)\r\n",
"Requirement already satisfied: zipp>=0.5 in /tmpfs/src/tf_docs_env/lib/python3.9/site-packages (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*) (3.20.0)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Collecting pyasn1<0.7.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached pyasn1-0.6.0-py2.py3-none-any.whl.metadata (8.3 kB)\r\n",
"Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard<2.14,>=2.13->tensorflow<2.14,>=2.13.0->tensorflow-text==2.13.*)\r\n",
" Using cached oauthlib-3.2.2-py3-none-any.whl.metadata (7.5 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading tensorflow_text-2.13.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.5 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading tensorflow-2.13.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (479.7 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading gast-0.4.0-py3-none-any.whl (9.8 kB)\r\n",
"Downloading keras-2.13.1-py3-none-any.whl (1.7 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.3 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading tensorboard-2.13.0-py3-none-any.whl (5.6 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading tensorflow_estimator-2.13.0-py2.py3-none-any.whl (440 kB)\r\n",
"Downloading tf_keras-2.15.0-py3-none-any.whl (1.7 MB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading typing_extensions-4.5.0-py3-none-any.whl (27 kB)\r\n",
"Using cached google_auth-2.33.0-py2.py3-none-any.whl (200 kB)\r\n",
"Using cached google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)\r\n",
"Using cached pyasn1_modules-0.4.0-py3-none-any.whl (181 kB)\r\n",
"Using cached requests_oauthlib-2.0.0-py2.py3-none-any.whl (24 kB)\r\n",
"Using cached rsa-4.9-py3-none-any.whl (34 kB)\r\n",
"Using cached oauthlib-3.2.2-py3-none-any.whl (151 kB)\r\n",
"Using cached pyasn1-0.6.0-py2.py3-none-any.whl (85 kB)\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Installing collected packages: typing-extensions, tf-keras, tensorflow-estimator, pyasn1, oauthlib, numpy, keras, gast, rsa, requests-oauthlib, pyasn1-modules, google-auth, google-auth-oauthlib, tensorboard, tensorflow, tensorflow-text\r\n",
" Attempting uninstall: typing-extensions\r\n",
" Found existing installation: typing_extensions 4.12.2\r\n",
" Uninstalling typing_extensions-4.12.2:\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Successfully uninstalled typing_extensions-4.12.2\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: tf-keras\r\n",
" Found existing installation: tf_keras 2.17.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Uninstalling tf_keras-2.17.0:\r\n",
" Successfully uninstalled tf_keras-2.17.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: numpy\r\n",
" Found existing installation: numpy 1.26.4\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Uninstalling numpy-1.26.4:\r\n",
" Successfully uninstalled numpy-1.26.4\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: keras\r\n",
" Found existing installation: keras 3.5.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Uninstalling keras-3.5.0:\r\n",
" Successfully uninstalled keras-3.5.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: gast\r\n",
" Found existing installation: gast 0.6.0\r\n",
" Uninstalling gast-0.6.0:\r\n",
" Successfully uninstalled gast-0.6.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: tensorboard\r\n",
" Found existing installation: tensorboard 2.17.1\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Uninstalling tensorboard-2.17.1:\r\n",
" Successfully uninstalled tensorboard-2.17.1\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Attempting uninstall: tensorflow\r\n",
" Found existing installation: tensorflow 2.17.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Uninstalling tensorflow-2.17.0:\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
" Successfully uninstalled tensorflow-2.17.0\r\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully installed gast-0.4.0 google-auth-2.33.0 google-auth-oauthlib-1.0.0 keras-2.13.1 numpy-1.24.3 oauthlib-3.2.2 pyasn1-0.6.0 pyasn1-modules-0.4.0 requests-oauthlib-2.0.0 rsa-4.9 tensorboard-2.13.0 tensorflow-2.13.1 tensorflow-estimator-2.13.0 tensorflow-text-2.13.0 tf-keras-2.15.0 typing-extensions-4.5.0\r\n"
]
}
],
"source": [
"!pip install \"tensorflow-text==2.13.*\""
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:20.054147Z",
"iopub.status.busy": "2024-08-16T07:38:20.053866Z",
"iopub.status.idle": "2024-08-16T07:38:23.220823Z",
"shell.execute_reply": "2024-08-16T07:38:23.220141Z"
},
"id": "baYFZMW_bJHh"
},
"outputs": [],
"source": [
"import collections\n",
"import pathlib\n",
"\n",
"import matplotlib.pyplot as plt\n",
"import tensorflow as tf\n",
"\n",
"from tensorflow.keras import layers\n",
"from tensorflow.keras import losses\n",
"from tensorflow.keras import utils\n",
"from tensorflow.keras.layers import TextVectorization\n",
"\n",
"import tensorflow_datasets as tfds\n",
"import tensorflow_text as tf_text"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Az-d_K5_HQ5k"
},
"source": [
"## Example 1: Predict the tag for a Stack Overflow question\n",
"\n",
"As a first example, you will download a dataset of programming questions from Stack Overflow. Each question (_\"How do I sort a dictionary by value?\"_) is labeled with exactly one tag (`Python`, `CSharp`, `JavaScript`, or `Java`). Your task is to develop a model that predicts the tag for a question. This is an example of multi-class classification—an important and widely applicable kind of machine learning problem."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "bU4PRq7Z81B0"
},
"source": [
"To implement this task, you'll start with the simplest tools:\n",
"\n",
"* `keras.utils.text_datasaet_from_directory`: for loading text-file examples.\n",
"* `keras.layers.TextVectorization`: for converting strings to token indices.\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "tjC3yLa5IjP7"
},
"source": [
"### Download and explore the dataset\n",
"\n",
"Begin by downloading the Stack Overflow dataset using `tf.keras.utils.get_file`, and exploring the directory structure:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:23.226266Z",
"iopub.status.busy": "2024-08-16T07:38:23.224828Z",
"iopub.status.idle": "2024-08-16T07:38:26.625037Z",
"shell.execute_reply": "2024-08-16T07:38:26.624334Z"
},
"id": "8ELgzA6SHTuV"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 8192/6053168 [..............................] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"4202496/6053168 [===================>..........] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"6053168/6053168 [==============================] - 0s 0us/step\n"
]
}
],
"source": [
"data_url = 'https://storage.googleapis.com/download.tensorflow.org/data/stack_overflow_16k.tar.gz'\n",
"\n",
"dataset_dir = utils.get_file(\n",
" origin=data_url,\n",
" untar=True,\n",
" cache_dir='stack_overflow',\n",
" cache_subdir='')\n",
"\n",
"dataset_dir = pathlib.Path(dataset_dir).parent"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:26.629184Z",
"iopub.status.busy": "2024-08-16T07:38:26.628650Z",
"iopub.status.idle": "2024-08-16T07:38:26.635600Z",
"shell.execute_reply": "2024-08-16T07:38:26.635035Z"
},
"id": "jIrPl5fUH2gb"
},
"outputs": [
{
"data": {
"text/plain": [
"[PosixPath('/tmp/.keras/stack_overflow_16k.tar.gz'),\n",
" PosixPath('/tmp/.keras/README.md'),\n",
" PosixPath('/tmp/.keras/train'),\n",
" PosixPath('/tmp/.keras/test')]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"list(dataset_dir.iterdir())"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:26.639206Z",
"iopub.status.busy": "2024-08-16T07:38:26.638658Z",
"iopub.status.idle": "2024-08-16T07:38:26.642979Z",
"shell.execute_reply": "2024-08-16T07:38:26.642410Z"
},
"id": "fEoV7YByJoWQ"
},
"outputs": [
{
"data": {
"text/plain": [
"[PosixPath('/tmp/.keras/train/java'),\n",
" PosixPath('/tmp/.keras/train/csharp'),\n",
" PosixPath('/tmp/.keras/train/python'),\n",
" PosixPath('/tmp/.keras/train/javascript')]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_dir = dataset_dir/'train'\n",
"list(train_dir.iterdir())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "3mxAN17MhEh0"
},
"source": [
"The `train/csharp`, `train/java`, `train/python` and `train/javascript` directories contain many text files, each of which is a Stack Overflow question.\n",
"\n",
"Print an example file and inspect the data:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:26.646237Z",
"iopub.status.busy": "2024-08-16T07:38:26.645783Z",
"iopub.status.idle": "2024-08-16T07:38:26.649575Z",
"shell.execute_reply": "2024-08-16T07:38:26.648900Z"
},
"id": "Go1vTSGdJu08"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"why does this blank program print true x=true.def stupid():. x=false.stupid().print x\n",
"\n"
]
}
],
"source": [
"sample_file = train_dir/'python/1755.txt'\n",
"\n",
"with open(sample_file) as f:\n",
" print(f.read())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "deWBTkpJiO7D"
},
"source": [
"### Load the dataset\n",
"\n",
"Next, you will load the data off-disk and prepare it into a format suitable for training. To do so, you will use the `tf.keras.utils.text_dataset_from_directory` utility to create a labeled `tf.data.Dataset`. If you're new to `tf.data`, it's a powerful collection of tools for building input pipelines. (Learn more in the [tf.data: Build TensorFlow input pipelines](../../guide/data.ipynb) guide.)\n",
"\n",
"The `tf.keras.utils.text_dataset_from_directory` API expects a directory structure as follows:\n",
"\n",
"```\n",
"train/\n",
"...csharp/\n",
"......1.txt\n",
"......2.txt\n",
"...java/\n",
"......1.txt\n",
"......2.txt\n",
"...javascript/\n",
"......1.txt\n",
"......2.txt\n",
"...python/\n",
"......1.txt\n",
"......2.txt\n",
"```"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Dyl6JTAjlbQV"
},
"source": [
"When running a machine learning experiment, it is a best practice to divide your dataset into three splits: [training](https://developers.google.com/machine-learning/glossary#training_set), [validation](https://developers.google.com/machine-learning/glossary#validation_set), and [test](https://developers.google.com/machine-learning/glossary#test-set).\n",
"\n",
"The Stack Overflow dataset has already been divided into training and test sets, but it lacks a validation set.\n",
"\n",
"Create a validation set using an 80:20 split of the training data by using `tf.keras.utils.text_dataset_from_directory` with `validation_split` set to `0.2` (i.e. 20%):"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:26.653024Z",
"iopub.status.busy": "2024-08-16T07:38:26.652478Z",
"iopub.status.idle": "2024-08-16T07:38:27.535592Z",
"shell.execute_reply": "2024-08-16T07:38:27.534910Z"
},
"id": "qqyliMw8N-az"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 8000 files belonging to 4 classes.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using 6400 files for training.\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-08-16 07:38:27.487373: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1960] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n",
"Skipping registering GPU devices...\n"
]
}
],
"source": [
"batch_size = 32\n",
"seed = 42\n",
"\n",
"raw_train_ds = utils.text_dataset_from_directory(\n",
" train_dir,\n",
" batch_size=batch_size,\n",
" validation_split=0.2,\n",
" subset='training',\n",
" seed=seed)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "DMI_gPLfloD7"
},
"source": [
"As the previous cell output suggests, there are 8,000 examples in the training folder, of which you will use 80% (or 6,400) for training. You will learn in a moment that you can train a model by passing a `tf.data.Dataset` directly to `Model.fit`.\n",
"\n",
"First, iterate over the dataset and print out a few examples, to get a feel for the data.\n",
"\n",
"Note: To increase the difficulty of the classification problem, the dataset author replaced occurrences of the words *Python*, *CSharp*, *JavaScript*, or *Java* in the programming question with the word *blank*."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:27.539433Z",
"iopub.status.busy": "2024-08-16T07:38:27.538881Z",
"iopub.status.idle": "2024-08-16T07:38:27.564780Z",
"shell.execute_reply": "2024-08-16T07:38:27.564167Z"
},
"id": "_JMTyZ6Glt_C"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Question: b'\"my tester is going to the wrong constructor i am new to programming so if i ask a question that can be easily fixed, please forgive me. my program has a tester class with a main. when i send that to my regularpolygon class, it sends it to the wrong constructor. i have two constructors. 1 without perameters..public regularpolygon(). {. mynumsides = 5;. mysidelength = 30;. }//end default constructor...and my second, with perameters. ..public regularpolygon(int numsides, double sidelength). {. mynumsides = numsides;. mysidelength = sidelength;. }// end constructor...in my tester class i have these two lines:..regularpolygon shape = new regularpolygon(numsides, sidelength);. shape.menu();...numsides and sidelength were declared and initialized earlier in the testing class...so what i want to happen, is the tester class sends numsides and sidelength to the second constructor and use it in that class. but it only uses the default constructor, which therefor ruins the whole rest of the program. can somebody help me?..for those of you who want to see more of my code: here you go..public double vertexangle(). {. system.out.println(\"\"the vertex angle method: \"\" + mynumsides);// prints out 5. system.out.println(\"\"the vertex angle method: \"\" + mysidelength); // prints out 30.. double vertexangle;. vertexangle = ((mynumsides - 2.0) / mynumsides) * 180.0;. return vertexangle;. }//end method vertexangle..public void menu().{. system.out.println(mynumsides); // prints out what the user puts in. system.out.println(mysidelength); // prints out what the user puts in. gotographic();. calcr(mynumsides, mysidelength);. calcr(mynumsides, mysidelength);. print(); .}// end menu...this is my entire tester class:..public static void main(string[] arg).{. int numsides;. double sidelength;. scanner keyboard = new scanner(system.in);.. system.out.println(\"\"welcome to the regular polygon program!\"\");. system.out.println();.. system.out.print(\"\"enter the number of sides of the polygon ==> \"\");. numsides = keyboard.nextint();. system.out.println();.. system.out.print(\"\"enter the side length of each side ==> \"\");. sidelength = keyboard.nextdouble();. system.out.println();.. regularpolygon shape = new regularpolygon(numsides, sidelength);. shape.menu();.}//end main...for testing it i sent it numsides 4 and sidelength 100.\"\\n'\n",
"Label: 1\n",
"Question: b'\"blank code slow skin detection this code changes the color space to lab and using a threshold finds the skin area of an image. but it\\'s ridiculously slow. i don\\'t know how to make it faster ? ..from colormath.color_objects import *..def skindetection(img, treshold=80, color=[255,20,147]):.. print img.shape. res=img.copy(). for x in range(img.shape[0]):. for y in range(img.shape[1]):. rgbimg=rgbcolor(img[x,y,0],img[x,y,1],img[x,y,2]). labimg=rgbimg.convert_to(\\'lab\\', debug=false). if (labimg.lab_l > treshold):. res[x,y,:]=color. else: . res[x,y,:]=img[x,y,:].. return res\"\\n'\n",
"Label: 3\n",
"Question: b'\"option and validation in blank i want to add a new option on my system where i want to add two text files, both rental.txt and customer.txt. inside each text are id numbers of the customer, the videotape they need and the price...i want to place it as an option on my code. right now i have:...add customer.rent return.view list.search.exit...i want to add this as my sixth option. say for example i ordered a video, it would display the price and would let me confirm the price and if i am going to buy it or not...here is my current code:.. import blank.io.*;. import blank.util.arraylist;. import static blank.lang.system.out;.. public class rentalsystem{. static bufferedreader input = new bufferedreader(new inputstreamreader(system.in));. static file file = new file(\"\"file.txt\"\");. static arraylist<string> list = new arraylist<string>();. static int rows;.. public static void main(string[] args) throws exception{. introduction();. system.out.print(\"\"nn\"\");. login();. system.out.print(\"\"nnnnnnnnnnnnnnnnnnnnnn\"\");. introduction();. string repeat;. do{. loadfile();. system.out.print(\"\"nwhat do you want to do?nn\"\");. system.out.print(\"\"n - - - - - - - - - - - - - - - - - - - - - - -\"\");. system.out.print(\"\"nn | 1. add customer | 2. rent return |n\"\");. system.out.print(\"\"n - - - - - - - - - - - - - - - - - - - - - - -\"\");. system.out.print(\"\"nn | 3. view list | 4. search |n\"\");. system.out.print(\"\"n - - - - - - - - - - - - - - - - - - - - - - -\"\");. system.out.print(\"\"nn | 5. exit |n\"\");. system.out.print(\"\"n - - - - - - - - - -\"\");. system.out.print(\"\"nnchoice:\"\");. int choice = integer.parseint(input.readline());. switch(choice){. case 1:. writedata();. break;. case 2:. rentdata();. break;. case 3:. viewlist();. break;. case 4:. search();. break;. case 5:. system.out.println(\"\"goodbye!\"\");. system.exit(0);. default:. system.out.print(\"\"invalid choice: \"\");. break;. }. system.out.print(\"\"ndo another task? [y/n] \"\");. repeat = input.readline();. }while(repeat.equals(\"\"y\"\"));.. if(repeat!=\"\"y\"\") system.out.println(\"\"ngoodbye!\"\");.. }.. public static void writedata() throws exception{. system.out.print(\"\"nname: \"\");. string cname = input.readline();. system.out.print(\"\"address: \"\");. string add = input.readline();. system.out.print(\"\"phone no.: \"\");. string pno = input.readline();. system.out.print(\"\"rental amount: \"\");. string ramount = input.readline();. system.out.print(\"\"tapenumber: \"\");. string tno = input.readline();. system.out.print(\"\"title: \"\");. string title = input.readline();. system.out.print(\"\"date borrowed: \"\");. string dborrowed = input.readline();. system.out.print(\"\"due date: \"\");. string ddate = input.readline();. createline(cname, add, pno, ramount,tno, title, dborrowed, ddate);. rentdata();. }.. public static void createline(string name, string address, string phone , string rental, string tapenumber, string title, string borrowed, string due) throws exception{. filewriter fw = new filewriter(file, true);. fw.write(\"\"nname: \"\"+name + \"\"naddress: \"\" + address +\"\"nphone no.: \"\"+ phone+\"\"nrentalamount: \"\"+rental+\"\"ntape no.: \"\"+ tapenumber+\"\"ntitle: \"\"+ title+\"\"ndate borrowed: \"\"+borrowed +\"\"ndue date: \"\"+ due+\"\":rn\"\");. fw.close();. }.. public static void loadfile() throws exception{. try{. list.clear();. fileinputstream fstream = new fileinputstream(file);. bufferedreader br = new bufferedreader(new inputstreamreader(fstream));. rows = 0;. while( br.ready()). {. list.add(br.readline());. rows++;. }. br.close();. } catch(exception e){. system.out.println(\"\"list not yet loaded.\"\");. }. }.. public static void viewlist(){. system.out.print(\"\"n~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. system.out.print(\"\" |list of all costumers|\"\");. system.out.print(\"\"~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. for(int i = 0; i <rows; i++){. system.out.println(list.get(i));. }. }. public static void rentdata()throws exception. { system.out.print(\"\"n~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. system.out.print(\"\" |rent data list|\"\");. system.out.print(\"\"~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. system.out.print(\"\"nenter customer name: \"\");. string cname = input.readline();. system.out.print(\"\"date borrowed: \"\");. string dborrowed = input.readline();. system.out.print(\"\"due date: \"\");. string ddate = input.readline();. system.out.print(\"\"return date: \"\");. string rdate = input.readline();. system.out.print(\"\"rent amount: \"\");. string ramount = input.readline();.. system.out.print(\"\"you pay:\"\"+ramount);... }. public static void search()throws exception. { system.out.print(\"\"n~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. system.out.print(\"\" |search costumers|\"\");. system.out.print(\"\"~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~\"\");. system.out.print(\"\"nenter costumer name: \"\");. string cname = input.readline();. boolean found = false;.. for(int i=0; i < rows; i++){. string temp[] = list.get(i).split(\"\",\"\");.. if(cname.equals(temp[0])){. system.out.println(\"\"search result:nyou are \"\" + temp[0] + \"\" from \"\" + temp[1] + \"\".\"\"+ temp[2] + \"\".\"\"+ temp[3] + \"\".\"\"+ temp[4] + \"\".\"\"+ temp[5] + \"\" is \"\" + temp[6] + \"\".\"\"+ temp[7] + \"\" is \"\" + temp[8] + \"\".\"\");. found = true;. }. }.. if(!found){. system.out.print(\"\"no results.\"\");. }.. }.. public static boolean evaluate(string uname, string pass){. if (uname.equals(\"\"admin\"\")&&pass.equals(\"\"12345\"\")) return true;. else return false;. }.. public static string login()throws exception{. bufferedreader input=new bufferedreader(new inputstreamreader(system.in));. int counter=0;. do{. system.out.print(\"\"username:\"\");. string uname =input.readline();. system.out.print(\"\"password:\"\");. string pass =input.readline();.. boolean accept= evaluate(uname,pass);.. if(accept){. break;. }else{. system.out.println(\"\"incorrect username or password!\"\");. counter ++;. }. }while(counter<3);.. if(counter !=3) return \"\"login successful\"\";. else return \"\"login failed\"\";. }. public static void introduction() throws exception{.. system.out.println(\"\" - - - - - - - - - - - - - - - - - - - - - - - - -\"\");. system.out.println(\"\" ! r e n t a l !\"\");. system.out.println(\"\" ! ~ ~ ~ ~ ~ ! ================= ! ~ ~ ~ ~ ~ !\"\");. system.out.println(\"\" ! s y s t e m !\"\");. system.out.println(\"\" - - - - - - - - - - - - - - - - - - - - - - - - -\"\");. }..}\"\\n'\n",
"Label: 1\n",
"Question: b'\"exception: dynamic sql generation for the updatecommand is not supported against a selectcommand that does not return any key i dont know what is the problem this my code : ..string nomtable;..datatable listeetablissementtable = new datatable();.datatable listeinteretstable = new datatable();.dataset ds = new dataset();.sqldataadapter da;.sqlcommandbuilder cmdb;..private void listeinterets_click(object sender, eventargs e).{. nomtable = \"\"listeinteretstable\"\";. d.cnx.open();. da = new sqldataadapter(\"\"select nome from offices\"\", d.cnx);. ds = new dataset();. da.fill(ds, nomtable);. datagridview1.datasource = ds.tables[nomtable];.}..private void sauvgarder_click(object sender, eventargs e).{. d.cnx.open();. cmdb = new sqlcommandbuilder(da);. da.update(ds, nomtable);. d.cnx.close();.}\"\\n'\n",
"Label: 0\n",
"Question: b'\"parameter with question mark and super in blank, i\\'ve come across a method that is formatted like this:..public final subscription subscribe(final action1<? super t> onnext, final action1<throwable> onerror) {.}...in the first parameter, what does the question mark and super mean?\"\\n'\n",
"Label: 1\n",
"Question: b'call two objects wsdl the first time i got a very strange wsdl. ..i would like to call the object (interface - invoicecheck_out) do you know how?....i would like to call the object (variable) do you know how?..try to call (it`s ok)....try to call (how call this?)\\n'\n",
"Label: 0\n",
"Question: b\"how to correctly make the icon for systemtray in blank using icon sizes of any dimension for systemtray doesn't look good overall. .what is the correct way of making icons for windows system tray?..screenshots: https://imgur.com/zsibwn9..icon: https://imgur.com/vsh4zo8\\n\"\n",
"Label: 0\n",
"Question: b'\"is there a way to check a variable that exists in a different script than the original one? i\\'m trying to check if a variable, which was previously set to true in 2.py in 1.py, as 1.py is only supposed to continue if the variable is true...2.py..import os..completed = false..#some stuff here..completed = true...1.py..import 2 ..if completed == true. #do things...however i get a syntax error at ..if completed == true\"\\n'\n",
"Label: 3\n",
"Question: b'\"blank control flow i made a number which asks for 2 numbers with blank and responds with the corresponding message for the case. how come it doesnt work for the second number ? .regardless what i enter for the second number , i am getting the message \"\"your number is in the range 0-10\"\"...using system;.using system.collections.generic;.using system.linq;.using system.text;..namespace consoleapplication1.{. class program. {. static void main(string[] args). {. string myinput; // declaring the type of the variables. int myint;.. string number1;. int number;... console.writeline(\"\"enter a number\"\");. myinput = console.readline(); //muyinput is a string which is entry input. myint = int32.parse(myinput); // myint converts the string into an integer.. if (myint > 0). console.writeline(\"\"your number {0} is greater than zero.\"\", myint);. else if (myint < 0). console.writeline(\"\"your number {0} is less than zero.\"\", myint);. else. console.writeline(\"\"your number {0} is equal zero.\"\", myint);.. console.writeline(\"\"enter another number\"\");. number1 = console.readline(); . number = int32.parse(myinput); .. if (number < 0 || number == 0). console.writeline(\"\"your number {0} is less than zero or equal zero.\"\", number);. else if (number > 0 && number <= 10). console.writeline(\"\"your number {0} is in the range from 0 to 10.\"\", number);. else. console.writeline(\"\"your number {0} is greater than 10.\"\", number);.. console.writeline(\"\"enter another number\"\");.. }. } .}\"\\n'\n",
"Label: 0\n",
"Question: b'\"credentials cannot be used for ntlm authentication i am getting org.apache.commons.httpclient.auth.invalidcredentialsexception: credentials cannot be used for ntlm authentication: exception in eclipse..whether it is possible mention eclipse to take system proxy settings directly?..public class httpgetproxy {. private static final string proxy_host = \"\"proxy.****.com\"\";. private static final int proxy_port = 6050;.. public static void main(string[] args) {. httpclient client = new httpclient();. httpmethod method = new getmethod(\"\"https://kodeblank.org\"\");.. hostconfiguration config = client.gethostconfiguration();. config.setproxy(proxy_host, proxy_port);.. string username = \"\"*****\"\";. string password = \"\"*****\"\";. credentials credentials = new usernamepasswordcredentials(username, password);. authscope authscope = new authscope(proxy_host, proxy_port);.. client.getstate().setproxycredentials(authscope, credentials);.. try {. client.executemethod(method);.. if (method.getstatuscode() == httpstatus.sc_ok) {. string response = method.getresponsebodyasstring();. system.out.println(\"\"response = \"\" + response);. }. } catch (ioexception e) {. e.printstacktrace();. } finally {. method.releaseconnection();. }. }.}...exception:... dec 08, 2017 1:41:39 pm . org.apache.commons.httpclient.auth.authchallengeprocessor selectauthscheme. info: ntlm authentication scheme selected. dec 08, 2017 1:41:39 pm org.apache.commons.httpclient.httpmethoddirector executeconnect. severe: credentials cannot be used for ntlm authentication: . org.apache.commons.httpclient.usernamepasswordcredentials. org.apache.commons.httpclient.auth.invalidcredentialsexception: credentials . cannot be used for ntlm authentication: . enter code here . org.apache.commons.httpclient.usernamepasswordcredentials. at org.apache.commons.httpclient.auth.ntlmscheme.authenticate(ntlmscheme.blank:332). at org.apache.commons.httpclient.httpmethoddirector.authenticateproxy(httpmethoddirector.blank:320). at org.apache.commons.httpclient.httpmethoddirector.executeconnect(httpmethoddirector.blank:491). at org.apache.commons.httpclient.httpmethoddirector.executewithretry(httpmethoddirector.blank:391). at org.apache.commons.httpclient.httpmethoddirector.executemethod(httpmethoddirector.blank:171). at org.apache.commons.httpclient.httpclient.executemethod(httpclient.blank:397). at org.apache.commons.httpclient.httpclient.executemethod(httpclient.blank:323). at httpgetproxy.main(httpgetproxy.blank:31). dec 08, 2017 1:41:39 pm org.apache.commons.httpclient.httpmethoddirector processproxyauthchallenge. info: failure authenticating with ntlm @proxy.****.com:6050\"\\n'\n",
"Label: 1\n"
]
}
],
"source": [
"for text_batch, label_batch in raw_train_ds.take(1):\n",
" for i in range(10):\n",
" print(\"Question: \", text_batch.numpy()[i])\n",
" print(\"Label:\", label_batch.numpy()[i])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jCZGl4Q5l2sS"
},
"source": [
"The labels are `0`, `1`, `2` or `3`. To check which of these correspond to which string label, you can inspect the `class_names` property on the dataset:\n"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:27.568256Z",
"iopub.status.busy": "2024-08-16T07:38:27.567689Z",
"iopub.status.idle": "2024-08-16T07:38:27.571697Z",
"shell.execute_reply": "2024-08-16T07:38:27.571064Z"
},
"id": "gIpCS7YjmGkj"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Label 0 corresponds to csharp\n",
"Label 1 corresponds to java\n",
"Label 2 corresponds to javascript\n",
"Label 3 corresponds to python\n"
]
}
],
"source": [
"for i, label in enumerate(raw_train_ds.class_names):\n",
" print(\"Label\", i, \"corresponds to\", label)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "oUsdn-37qol9"
},
"source": [
"Next, you will create a validation and a test set using `tf.keras.utils.text_dataset_from_directory`. You will use the remaining 1,600 reviews from the training set for validation.\n",
"\n",
"Note: When using the `validation_split` and `subset` arguments of `tf.keras.utils.text_dataset_from_directory`, make sure to either specify a random seed or pass `shuffle=False`, so that the validation and training splits have no overlap."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:27.575055Z",
"iopub.status.busy": "2024-08-16T07:38:27.574449Z",
"iopub.status.idle": "2024-08-16T07:38:27.856339Z",
"shell.execute_reply": "2024-08-16T07:38:27.855568Z"
},
"id": "x7m6sCWJQuYt"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 8000 files belonging to 4 classes.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using 1600 files for validation.\n"
]
}
],
"source": [
"# Create a validation set.\n",
"raw_val_ds = utils.text_dataset_from_directory(\n",
" train_dir,\n",
" batch_size=batch_size,\n",
" validation_split=0.2,\n",
" subset='validation',\n",
" seed=seed)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:27.859731Z",
"iopub.status.busy": "2024-08-16T07:38:27.859427Z",
"iopub.status.idle": "2024-08-16T07:38:28.146799Z",
"shell.execute_reply": "2024-08-16T07:38:28.145902Z"
},
"id": "BXMZc7fMQwKE"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found 8000 files belonging to 4 classes.\n"
]
}
],
"source": [
"test_dir = dataset_dir/'test'\n",
"\n",
"# Create a test set.\n",
"raw_test_ds = utils.text_dataset_from_directory(\n",
" test_dir,\n",
" batch_size=batch_size)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NHuAF8hYfP5Z"
},
"source": [
"### Configure the datasets for performance\n",
"\n",
"These are two important methods you should use when loading data to make sure that I/O does not become blocking.\n",
"\n",
"- `Dataset.cache` keeps data in memory after it's loaded off-disk. This will ensure the dataset does not become a bottleneck while training your model. If your dataset is too large to fit into memory, you can also use this method to create a performant on-disk cache, which is more efficient to read than many small files.\n",
"- `Dataset.prefetch` overlaps data preprocessing and model execution while training.\n",
"\n",
"You can learn more about both methods, as well as how to cache data to disk in the *Prefetching* section of the [Better performance with the tf.data API](../../guide/data_performance.ipynb) guide."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:28.150372Z",
"iopub.status.busy": "2024-08-16T07:38:28.149858Z",
"iopub.status.idle": "2024-08-16T07:38:28.157813Z",
"shell.execute_reply": "2024-08-16T07:38:28.157236Z"
},
"id": "h14NxXx13WRD"
},
"outputs": [],
"source": [
"raw_train_ds = raw_train_ds.cache().prefetch(buffer_size=tf.data.AUTOTUNE)\n",
"raw_val_ds = raw_val_ds.cache().prefetch(buffer_size=tf.data.AUTOTUNE)\n",
"raw_test_ds = raw_test_ds.prefetch(buffer_size=tf.data.AUTOTUNE)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8Ph91k8n3yPB"
},
"source": [
"This first example will keep things simple by integrating the text processing into the model. But you may be able to increase performance by moving the text processing into the dataset pipeline, this is demonstrated in [Example 2](#example2)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Xdt-ATrGRGDL"
},
"source": [
"### Prepare the dataset for training"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "N6fRti45Rlj8"
},
"source": [
"Next, you will standardize, tokenize, and vectorize the data using the `tf.keras.layers.TextVectorization` layer.\n",
"\n",
"- _Standardization_ refers to preprocessing the text, typically to remove punctuation or HTML elements to simplify the dataset.\n",
"- _Tokenization_ refers to splitting strings into tokens (for example, splitting a sentence into individual words by splitting on whitespace).\n",
"- _Vectorization_ refers to converting tokens into numbers so they can be fed into a neural network.\n",
"\n",
"All of these tasks can be accomplished with this layer. (You can learn more about each of these in the `tf.keras.layers.TextVectorization` API docs.)\n",
"\n",
"Note that:\n",
"\n",
"- The default standardization converts text to lowercase and removes punctuation (`standardize='lower_and_strip_punctuation'`).\n",
"- The default tokenizer splits on whitespace (`split='whitespace'`).\n",
"- The default vectorization mode is `'int'` (`output_mode='int'`). This outputs integer indices (one per token). This mode can be used to build models that take word order into account. You can also use other modes—like `'binary'`—to build [bag-of-words](https://developers.google.com/machine-learning/glossary#bag-of-words) models.\n",
"\n",
"You will build two models to learn more about standardization, tokenization, and vectorization with `TextVectorization`:\n",
"\n",
"- First, you will use the `'binary'` vectorization mode to build a bag-of-words model.\n",
"- Then, you will use the `'int'` mode with a 1D ConvNet."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:28.161649Z",
"iopub.status.busy": "2024-08-16T07:38:28.161204Z",
"iopub.status.idle": "2024-08-16T07:38:28.174627Z",
"shell.execute_reply": "2024-08-16T07:38:28.174046Z"
},
"id": "voaC43rZR0jc"
},
"outputs": [],
"source": [
"VOCAB_SIZE = 10000\n",
"\n",
"binary_vectorize_layer = TextVectorization(\n",
" max_tokens=VOCAB_SIZE,\n",
" output_mode='binary')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ifDPFxuf2Hfz"
},
"source": [
"For the `'int'` mode, in addition to maximum vocabulary size, you need to set an explicit maximum sequence length (`MAX_SEQUENCE_LENGTH`), which will cause the layer to pad or truncate sequences to exactly `output_sequence_length` values:"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:28.178053Z",
"iopub.status.busy": "2024-08-16T07:38:28.177599Z",
"iopub.status.idle": "2024-08-16T07:38:28.184430Z",
"shell.execute_reply": "2024-08-16T07:38:28.183861Z"
},
"id": "XWsY01Zl2aRe"
},
"outputs": [],
"source": [
"MAX_SEQUENCE_LENGTH = 250\n",
"\n",
"int_vectorize_layer = TextVectorization(\n",
" max_tokens=VOCAB_SIZE,\n",
" output_mode='int',\n",
" output_sequence_length=MAX_SEQUENCE_LENGTH)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ts6h9b5atD-Y"
},
"source": [
"Next, call `TextVectorization.adapt` to fit the state of the preprocessing layer to the dataset. This will cause the model to build an index of strings to integers.\n",
"\n",
"Note: It's important to only use your training data when calling `TextVectorization.adapt`, as using the test set would leak information."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:28.187871Z",
"iopub.status.busy": "2024-08-16T07:38:28.187427Z",
"iopub.status.idle": "2024-08-16T07:38:29.603145Z",
"shell.execute_reply": "2024-08-16T07:38:29.602288Z"
},
"id": "yTXsdDEqSf9e"
},
"outputs": [],
"source": [
"# Make a text-only dataset (without labels), then call `TextVectorization.adapt`.\n",
"train_text = raw_train_ds.map(lambda text, labels: text)\n",
"binary_vectorize_layer.adapt(train_text)\n",
"int_vectorize_layer.adapt(train_text)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "XKVO6Jg7Sls0"
},
"source": [
"Print the result of using these layers to preprocess data:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:29.607796Z",
"iopub.status.busy": "2024-08-16T07:38:29.607132Z",
"iopub.status.idle": "2024-08-16T07:38:29.625246Z",
"shell.execute_reply": "2024-08-16T07:38:29.624451Z"
},
"id": "Vi_sElMiSmXe"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Question: tf.Tensor(b'\"unit testing of setters and getters teacher wanted us to do a comprehensive unit test. for me, this will be the first time that i use junit. i am confused about testing set and get methods. do you think should i test them? if the answer is yes; is this code enough for testing?.. public void testsetandget(){. int a = 10;. class firstclass = new class();. firstclass.setvalue(10);. int value = firstclass.getvalue();. assert.asserttrue(\"\"error\"\", value==a);. }...in my code, i think if there is an error, we can\\'t know that the error is deriving because of setter or getter.\"\\n', shape=(), dtype=string)\n",
"Label: tf.Tensor(1, shape=(), dtype=int32)\n"
]
}
],
"source": [
"# Retrieve a batch (of 32 reviews and labels) from the dataset.\n",
"text_batch, label_batch = next(iter(raw_train_ds))\n",
"first_question, first_label = text_batch[0], label_batch[0]\n",
"print(\"Question:\", first_question)\n",
"print(\"Label:\", first_label)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "a2nTgt9e1KjK"
},
"source": [
"The binary vectorization layer returns a multi-hot vector, with a 1 in the location for each token that was in the input string."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:29.629128Z",
"iopub.status.busy": "2024-08-16T07:38:29.628578Z",
"iopub.status.idle": "2024-08-16T07:38:29.791317Z",
"shell.execute_reply": "2024-08-16T07:38:29.790492Z"
},
"id": "UGukZoYv2v3v"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'binary' vectorized question: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]\n"
]
},
{
"data": {
"text/plain": [
"(0.0, 1000.0)"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA6h0lEQVR4nO3de5xU9WH///de2FkQuejKrpBF8BLRooAQyXpp4jdbieFHam8/qlQoNeSngV/RbY0SFWqtLk0rJW1Qqgmxv29UiPkpTSLBklU01FXkpuIFNahQcRcQYZHLLux+vn/gjjuzczln5jOX8zmvpw98zM6cOedzZs7Mec/n8zmfT4kxxggAACDgSgtdAAAAABsINQAAwAmEGgAA4ARCDQAAcAKhBgAAOIFQAwAAnECoAQAATiDUAAAAJ5QXugBedHV1adeuXTr55JNVUlJS6OIAAAAPjDE6ePCghg4dqtLS3NejBCLU7Nq1S7W1tYUuBgAAyMDOnTv1hS98IefbCUSoOfnkkyWdeFEGDBhQ4NIAAAAv2traVFtbGz2P51ogQk13k9OAAQMINQAABEy+uo7QURgAADiBUAMAAJxAqAEAAE4g1AAAACcQagAAgBMINQAAwAmEGgAA4ARCDQAAcAKhBgAAOMF3qHn++ec1ZcoUDR06VCUlJVq5cmXa56xdu1YXXXSRIpGIzj77bD388MMZFBUAACA536Hm0KFDGjNmjJYsWeJp+ffee0+TJ0/WFVdcoS1btuimm27St771LT399NO+CwsAAJCM77mfrrrqKl111VWel1+6dKlGjhyp++67T5J03nnnad26dfqXf/kXTZo0ye/mAQAAEsr5hJbNzc2qr6+PuW/SpEm66aabkj6nvb1d7e3t0b/b2tokSY2/flOV/fpLkvYd6tCpJ0VUXlaiqV+q1Vmn9deL2z/Ws9t265ovDdeu/Ue05s1WfXKoQ4NPqtDooQP1J+O/oLXbduu5t/doxKkn6cixTl09dpj6lJXo8Y3/oz8eN0xDBlRq9daPJJXo66Nr1Np2VEuf+50qyks1bFBfbfrgE0nS1eOG6avnDklY/uXrd2hE1Un68pmnyhijR17aoVE1J+vNj9pUUV6qjR98ohFVJ+lbl52pinL/3ZqOHuvU/27+QP/rvCE667T+np5z4PAxPfbyDv3h2KE6fWDfXo/vOdiu/3/T/+ikSLmqT47oyt+r0S9f2aVn3tqtCSMG6+DR4/rzL9XqUEenfvnKLl07cbgGVPbxXfZ4r+86oBe379OMujNUXma/i1e6/QZcsf9wh5a/vNPTsd7adlRPbv5Q//eEWp1yUkWeSujP4Y7j+umLH+jK82s0ouqkQhcnJ7q/y68YNURnD/H2XY7Uch5qWlpaVF1dHXNfdXW12tradOTIEfXt2/vD19jYqLvuuqvX/Y+8uEOlkX697v9w/xEtufYiXfvQi+oy0tstB7Wt5aB2HTgas9zlX6zSXz+2WW1Hj0fv+9mGnRpyckQvbt+nX2zZpRX/z5d1w083SZLe/Puv67ofv6S3Wz/ttc2VW3bp/YWTe92/8YNPdNsTr0mS3l84Weve3as7Vm5N9NJIkr7z1bOTPpbMD5re0QNrf6d7Vr2ZsAyJ/O3PX9GaN1r10xc/0Lpb/1evx2f9fxu0Zef+6N/rbr1C/+9jmyVJT27+UJK04f1PtGXnfu39tF2v72rTv10zznfZ403+13WSpIryUl335TOyXl+8dPsNuOJvfvaKmt7arcfW79Bzt1yRctnu77X/fnev/vf1E/NUQn/+8ddv6T+aP9D3V2/Tu/d+o9DFyYkfPvOufvjsu76+y5FaUV79NG/ePB04cCD6b+fOnZKkWZeP1OwrztKAytgsdrj9REjpMif+fv/jwzrU0dlrvUc7unQ47v7tew7pxe37JElvfNSmIz0e7zjelTDQpLJz3+GYv9/beyjpsq/uPOBr3d02flZb5Mfzb++RJP3PJ0cSPt4z0EjS3k87ei3z23f2aO+nJ2rQ/vvdvb7LkMobu9qsrq9buv0GXPHcZ8f6Bx8fTrOkot9rv33H7ufYppfeO/G9fLz7i91Bm3b4/y5HajmvqampqVFra2vMfa2trRowYEDCWhpJikQiikQive6fW/9FDRgwQE+9+lFMbQsAAEDOa2rq6urU1NQUc9+aNWtUV1dnbRuJcrwxve81MgmXBQAAwec71Hz66afasmWLtmzZIunEJdtbtmzRjh07JJ1oOpo+fXp0+RtuuEHbt2/Xd7/7Xb311lu6//779bOf/Uw333yznT0AAABQBqFmw4YNGjdunMaNO9FJtKGhQePGjdP8+fMlSR999FE04EjSyJEj9dRTT2nNmjUaM2aM7rvvPv3oRz/K6nLukpKSmL8TVMokqb1JXIMDAACCz3efmq9+9aspg0Gi0YK/+tWvavPmzX43BQAA4FlRXv2UTkn6RQAAQMgEMtTES1hvlKRJisYnAADc5ESoAQAACGaoof0JAADECWaoiZN4TJrEy3HxEwAAbnIi1AAAAAQy1HhpffJaewMAANwQyFADAAAQL5ChJn5EYQAAgECGmnh+pkkAAABuciLUeEeqAQDAVYEMNfGNTyYurGRz6baJuZ19CEpVjozXn4dsxsSfAJBbfM3aF8hQkykOIO94qQAAQRPIUJOun3CyjsReTtQlMbez75CcqqwZrz8P/aTpig0AucU1L/YFMtTES9xROME4NZarH1xuonF3zwAArnIi1Hhlo48MAAAoToEMNTaahQAAgFsCGWriJWx+8nhfyvWmqdlxuPXJ6X0DALjJiVDjFSdqAADcFchQE99jPGGnYAvbCXcICvXOAwACKJChJlO2Owpz2gcAoHiEK9SQQgAAcJYToSZhWLEQYNKtwulxatzdNQCAo5wINV5xogYAwF2BDDXJpkEAAADhFchQEy9x61OiK6L8VdWka15yueLH5X0DALjJiVDjFc1PAAC4K5Chplfjk4XRgxOtKswZiAAIAAiaQIaaTNk+T3PiBwCgeAQy1GTaT9jlS7ABAAi7QIaaeF6nSfASaXrmnnQZyPYIxcWEAAgACBonQo1XnKcBAHBXIEMNw9QAAIB4gQw18RLVwCRuPklfVdOzSSld85LLNT8O7xoAwFFOhBqvXA4hAACEXSBDTUncSDU257M0DFQjiQAIAAieQIaaTHGeBgDAXYEMNZmPU2O3HAAAoHgEMtTES9Qp2Hvn4bhlktxOvN20qwssl8fgAQC4yYlQ4xWnaQAA3BXIUBPf+hQfVrIZDbfnc23UxKRaR8a1IflIZyRAAMgpl2v7CyWQoSZTtg8gl5to3N0zAICrghlq0vQULknyeCFCSKqixl+a7n2lmT2tyDYBAKHG6Pj2BTPUxImvgUna/OQh08RMaMmIwgAABIYTocYrTtQAALgrkKGGGjsAABAvkKEmXq+rn5It57OqJt3yLtf8uNy0BgBwkxOhxiuXr1YCACDsAhlqevUYj6tWyKaWIbajcPaCOk4NARAAcosacfsCGWrSSXZCtj5OjcNHpMO7BgBwVCBDTbqOwsnGfynEeTqo49QAAHKLcWrsC2Soide7o3CymhovE1r2nCYhzTg1adcWXC7vGwDATU6EGq84UXvnctMaAMBNgQw1yaZBAAAA4RXIUBOv9zQJyRb0t66049Q4XJnh8K4BABzlRKjxisuUfeClAgAETCBDTa9hamRxnJrMn+oUAiAAIGgyCjVLlizRiBEjVFlZqYkTJ2r9+vUpl1+8eLHOPfdc9e3bV7W1tbr55pt19OjRjAqcDevNRQ6f911uWgMAuMl3qFmxYoUaGhq0YMECbdq0SWPGjNGkSZO0e/fuhMs/+uijuu2227RgwQK9+eab+vGPf6wVK1boe9/7XsaFzrSfMCdqAADc5TvULFq0SLNmzdLMmTN1/vnna+nSperXr5+WLVuWcPkXXnhBl156qa699lqNGDFCV155pa655pq0tTt+GON1DBov6+o5Tk269aUZxybAKSrARQcAhJSvUNPR0aGNGzeqvr7+8xWUlqq+vl7Nzc0Jn3PJJZdo48aN0RCzfft2rVq1St/4xjeSbqe9vV1tbW0x/2wIcsjIN14pAEDQlPtZeO/evers7FR1dXXM/dXV1XrrrbcSPufaa6/V3r17ddlll8kYo+PHj+uGG25I2fzU2Niou+66K+njGU8vAAAAnJXzq5/Wrl2re++9V/fff782bdqkJ554Qk899ZTuvvvupM+ZN2+eDhw4EP23c+fOlNs40fzU8+8k0yR4KK+JuZ2ueSnNugJc3UGtFgAgaHzV1FRVVamsrEytra0x97e2tqqmpibhc+68805dd911+ta3viVJuuCCC3To0CF9+9vf1u23367S0t65KhKJKBKJ+CmaJ5ynveOlAgAEja+amoqKCo0fP15NTU3R+7q6utTU1KS6urqEzzl8+HCv4FJWViYpi9qAuNYno/galsz5GVE47bqye3pBEQABAEHjq6ZGkhoaGjRjxgxNmDBBF198sRYvXqxDhw5p5syZkqTp06dr2LBhamxslCRNmTJFixYt0rhx4zRx4kS9++67uvPOOzVlypRouMkfu2dqt8/7bu8dAMA9vkPN1KlTtWfPHs2fP18tLS0aO3asVq9eHe08vGPHjpiamTvuuEMlJSW644479OGHH+q0007TlClTdM8992Rc6Ey7CVP7AACAu3yHGkmaM2eO5syZk/CxtWvXxm6gvFwLFizQggULMtmUJ8YYT+PLeMs0JsGt5NvN5vFiFuCiAwBCKpBzP2WKE7V3vFQAgKAJZKhJNE2Cn0uxU/FyabjndSl1kMq4nHlIHARAAMgtvmftC2SoSSd58xMdhb1ilm4AQNA4GWqSTXhZiFScavLNjEdGZkBlAAi8TCdnRnKBDDXxYaD3iMKZr9vWeDfZlqPQglx2AEA4BTLUZMr2edrlE7/DuwYAcFQgQ02mVXZBvsQaAACkFshQE8989t/nf2exLh/NWGknvAxwfQcBEAAQNE6EGq84TwMA4K5Ahpr45ie7HYXtdRWOL1fqbflZcWZP87UJAiAA5BTfs/YFMtSkl/hIsd4c5PABGeSmMwBAOAUy1KQf3yXx44xTAwAoFoxTY18gQ0283lnF1jQJGa8m8MK87wCAYHIi1Hhl+0Tt8nmfUAMACJpAhpqMx6mxWwwAAFBEAhlq4hljPDUbeRl7JWY9PpbN5PFiFuCiAwBCyolQ4xUnau8YfA8AEDROhBoj2RtRuOd6sjyvG5ngjlOT+00AQKjx29E+J0JNvKS1DNY7Cjt8RDq8awAANzkZakqS9CQuRAhhnBoAQCKMU2OfG6Gm1zQJlsapsTBNQlA5XQsFAHCSG6HGI+vj1Dh83nd53wAAbgpXqCl0AQAAQM44EWqMYgNLsvDit/Yh7Tg06Z7vb3NFJchlBwCEkxOhxiv6iXhH8xMAIGicCDUnRhS2M76MzQkt40c67vV4UY9TQ6oBgFzix6N9ToSaeMmufrLfUdjdI9LhXQMAOMrJUJN8nJr8Y5waAEAijFNjnxOhpldH4WzGqYmZbiHLcWqyenZhBbnsAIBwciLUeGa5TcXpJhqndw4A4CInQo2JH1E42XIe15Xodibiy9W7PMXcURgAkEv8drTPiVDTS7L5LDmAPOO1AgAEjZuhJknnq0JcrURHYQBAInQUts+JUGNkvA0p7GldFgW4tsPly9UBAG5yItR4Zfs07fJ53+FdAwA4KlyhhjM1AADOciLUGBM/vkw267Iz3cKJcgQ3RREAAQBB40So8cp681OAQ0s67u4ZAMBVToSaXuPUJJ37Kf2pOra/cZYjCgd5nBqqagAgp/iatc+JUBMvX8cJByQAAMXDyVCT7NL/QoQQxqkBACTCODX2ORNqLA1TY3eahOyeXlDUQgEAgsaZUOOF7Y69Lp/3Xe4EDQBwU7hCDedpAACc5USoMcZYHF/Gzng3J8oR3BQV4KIDAELKiVDjlf1pEtw987u7ZwAAVzkRaoy8jS/jJYN4Ge/GV7kCO05N7rcBAGHG96x9ToSaeMkOlHx0FHalg60r+wEACA8nQ00yjFMDACgWjFNjnxOhptc0CdmsK8ntjNYV4MqOIJcdABBOToSaXvJ0Qk504icMAABQGG6GmiRcvloJAICwcyLUmM/+6/l3xuuyOk1CcEMUARAAEDROhJp4Sa9+sn6e7r1CV7KAK/sBAAgPJ0KNiRuoJtn52Mt5OraGIvsZLQM7Tk3uNwEAocaPR/ucCDXxkjWd2D6AEnYUtruJguHDBgAImoxCzZIlSzRixAhVVlZq4sSJWr9+fcrl9+/fr9mzZ+v0009XJBLRF7/4Ra1atSqjAmejEH1cGKcGAJAI49TYV+73CStWrFBDQ4OWLl2qiRMnavHixZo0aZK2bdumIUOG9Fq+o6NDf/AHf6AhQ4bo5z//uYYNG6YPPvhAgwYNslF+SYmmSchuXdHb2bc+BVaQOzkDAMLJd6hZtGiRZs2apZkzZ0qSli5dqqeeekrLli3Tbbfd1mv5ZcuWad++fXrhhRfUp08fSdKIESOyK3Ua+eoonHCaBEfabRzZDQBAiPhqfuro6NDGjRtVX1//+QpKS1VfX6/m5uaEz/nFL36huro6zZ49W9XV1Ro9erTuvfdedXZ2Jt1Oe3u72traYv6lEj+icNLl0i9ibWTi7nXRURgAkAg/Hu3zFWr27t2rzs5OVVdXx9xfXV2tlpaWhM/Zvn27fv7zn6uzs1OrVq3SnXfeqfvuu0//8A//kHQ7jY2NGjhwYPRfbW2tn2LCBj5tAICAyfnVT11dXRoyZIgefPBBjR8/XlOnTtXtt9+upUuXJn3OvHnzdODAgei/nTt32imM5RO1l6uf6CgMAEiEjsL2+epTU1VVpbKyMrW2tsbc39raqpqamoTPOf3009WnTx+VlZVF7zvvvPPU0tKijo4OVVRU9HpOJBJRJBLxUTLjqSnHU/NTz5GJLYwoTPMTACARKsTt81VTU1FRofHjx6upqSl6X1dXl5qamlRXV5fwOZdeeqneffdddXV1Re97++23dfrppycMNLlkv6OwuwPV8GEDAASN7+anhoYGPfTQQ/qP//gPvfnmm7rxxht16NCh6NVQ06dP17x586LL33jjjdq3b5/mzp2rt99+W0899ZTuvfdezZ49295eeMQ4NQCAYkHzk32+L+meOnWq9uzZo/nz56ulpUVjx47V6tWro52Hd+zYodLSz7NSbW2tnn76ad1888268MILNWzYMM2dO1e33nqrtZ3wevWTt5X1XG92Kw1ybQfj1AAAgsZ3qJGkOXPmaM6cOQkfW7t2ba/76urq9OKLL2ayKavyM02CG2EgyIEMABBOTsz9FD+icKrl/CyT9Tg1YpwaAEBi/Hi0z4lQA/v4sAEAgiZUoSYvzU8+tkFHYQAILzoK2+dEqDHGeOrU62ksG5P4dia8lqsYudI3CAAQHk6EGs/yME6NM1EgH/12Ahr4AADFKVShhlMoAADuciLUpLvKyN+6TMLbGa3LBDdIBbXcAIDwciLUeGW7uSPbjsLFLB9NQ668VgCA4uBEqPF6cvSyXMwyFk66gR2nhsABADnF96x9ToQa2MdnDQAQNKEKNfk4UfupfQn7ODUEJwBhxjg19jkRak6MB+NlOQ/LJLmdiUB3FA5qwQEAoeVEqPHK9oByTncUzkMcY5waAIBN4Qo1nEMBAHCWE6HmxCzddhJLz9qDrKdJUICnSQhmsQEAIeZEqCkUp6dJyANeKwCATW6EGuN1DBovk172vJ39iMKpt1XM49QQOQAgl/iatc+NUOOR7eMn4QHpyFGal8vf3XipAABFIlyhpshOomEfpwYAwoxxauxzItQYWaxZ6LGi7DsKF1+Q8iqo5QYAhJcTocYr6+PUeLwviPIyTo0zrxYAoBiEK9RwDgUAwFlOhJoT0yRYGqemR+1B9tMkmMDWRhAAAQBB40So8cr+1U8JxqlxJAxw9RMAIGicCDVeOwr7nfQy29qfdB2Fi3ucmtxvAwDCjO9Z+5wINd7loaOwM0epK/sBAAiLUIWaYssbjFMDAOHFODX2ORFqjMdpEryuK3rbwrqKLEd5VmwBEACAdJwINV7ZPlEnWp8rWSAfoYbgBACwyYlQYzx2FfbSMdck/SMTJrgdhZ2JZwBQnPhhZ58ToQb28WEDAARNqEKN/RN1duPUhL2jMLVBAMKMjsL2ORFqvHYU9jaWTc8RhbMcp8akXkdxNz8BAHKJGnH7nAg1XtFR2Ds6CgMAgiZcoabIIkfYm58AIMxofrLPiVDjdZoEr+uK3s5ypemmSShmxRYAAQBIx4lQ45nt5qdE9wU1xcSj3w4AIGDcCDVWOwonvp2JdM+nozAAhJcrv4GLiRuhBtY5U+MEAAiNUIUa2yfqbFcX9o7CBCcAYUZHYfucCDXms//SL+dtbf6WT7Umk/LETfMTAIQXv+vscyLUeGV/nJrsRhQuZnkZpyb3mwAAhEi4Qk2hCxAn7M1PABBmND/Z50So8TpNgtd1fX7bwjQJxZakPAposQEAIeZEqPHKekfhhPe5EQfy0Yk3qIEPAFCcnAg1Xkfu9TROjc/lU67LpF4HHYUBILz4YWefE6EGOcCHDQAQMOEKNfmYpdvHNkLfUZjgBCDE6ChsnxOhxhiv49R4WMbmNAkyga1edKVvEAAgPJwINV5ZH6cmwYnflSiQn3FqXHm1AADFgFADAACc4ESo8Xr1k7d12bv+6cTVT8FMUgRAAEDQOBFqvLIeMLLsKFzM8hHGXHmtAADFwYlQ4/Xk6GksG4sdhdOto6jHqSFwAEBO2RzBHic4EWpgHx8vAEDQhCrU2D5RZztNQtjHqSE4AQgzxqmxL6NQs2TJEo0YMUKVlZWaOHGi1q9f7+l5y5cvV0lJia6++upMNpuS36alpMskuZ2JdNMkFDNqQgEgf/jOtcN3qFmxYoUaGhq0YMECbdq0SWPGjNGkSZO0e/fulM97//339bd/+7e6/PLLMy5s9ixPaOlwR+F8xDHakAEANvkONYsWLdKsWbM0c+ZMnX/++Vq6dKn69eunZcuWJX1OZ2enpk2bprvuuktnnnlmVgVOxu9owcmXMT1uZ1Oiz8qUYiU2OgrnKhiQNwAgt2I6CheuGE7xFWo6Ojq0ceNG1dfXf76C0lLV19erubk56fP+/u//XkOGDNH111/vaTvt7e1qa2uL+ZcOJ2G7eDkBAEHjK9Ts3btXnZ2dqq6ujrm/urpaLS0tCZ+zbt06/fjHP9ZDDz3keTuNjY0aOHBg9F9tba2fYiZlv6NwdmukozAAhBcdhe3L6dVPBw8e1HXXXaeHHnpIVVVVnp83b948HThwIPpv586daZ/j5QTpt6km29CSrqOwneanzFaRdhNUfQFATjFOjX3lfhauqqpSWVmZWltbY+5vbW1VTU1Nr+V/97vf6f3339eUKVOi93V1dZ3YcHm5tm3bprPOOqvX8yKRiCKRiJ+icUBYxqsJAAgaXzU1FRUVGj9+vJqamqL3dXV1qampSXV1db2WHzVqlF577TVt2bIl+u+b3/ymrrjiCm3ZssVas5JX1pufEl79xDg1XsW+VMQoAOFC85N9vmpqJKmhoUEzZszQhAkTdPHFF2vx4sU6dOiQZs6cKUmaPn26hg0bpsbGRlVWVmr06NExzx80aJAk9bo/W96an/wtk/3VT7nvwJyr1VPxBQD5w1euHb5DzdSpU7Vnzx7Nnz9fLS0tGjt2rFavXh3tPLxjxw6VluZ/oGK/A+tZ2WaG5QiCfOxGzz5FrrxuAIDC8R1qJGnOnDmaM2dOwsfWrl2b8rkPP/xwJpv0wMs4NR6W6Xmizao8J7aXqjOwvXFq7Ndh0kcJAHLL9gTKcGjuJw4IAADCzZlQUwiJajP8ZKuwdxTOx6XpAFCs6ChsnzOhJjcdhbMcpybNNq00P2W2hvSbIGQAQE7FTpPAl64N7oQajger+IABAILGmVDjhe0TdbZXP4W9+cnE3CZEAQgXmp/scybUeLqyyWfzU7bSTZNgaxtBWi8AoDe+c+1wJ9R4WSYPA9W4UuOQjw8YlzMCAGxyJ9R4GnzPyzg1/taZdos57yicmzTgSjgDgGLFjzn73Ak1nISt4sMGAAgaZ0KNF7ZP1ImCFB2FvbM5ejMABA0dhe1zJ9RYmvupZ4fjbGt/TnQUzvU0CZmtwscmAAA5QL9C+5wJNRwPlvGCAgACxplQ44nt5qeEVz95F/rmJ36lAAgxmp/scybUFOPVTyZ+hQFCx2sAxSLbKWuCgO9cO9wJNV4CSx5qalypcsjLODUxt9143QAAheNOqLHUUdhmJ9x0IwrTURgA0nPkt2IvNMHb506oKXQBHBOG6l4AgFucCTVe2D5RJ2x98vF8OgrHDI0MAKFCR2H7nAk1nia09LIeiwPCGWNSlqu4p0kAgOLg6vcRv+vscyfUFLoAjqH1CQAQNM6EGk8jCvtcJl3tT6LH45N3rsNBkDsK8ysFgBdh6OMXhn3MB2dCjd8xaJAGHzAAQMA4E2o8yUtH4TyEAQc7l/ErBUDY0FHYPmdCja1xakyS25lIO05NphvIQ7MNEQNAsXD1+4gmePtCFWrgHa8nACBonAk1XuRjmoS8hAFHqiz5lQIgzGh+ss+ZUON3DJqky1hsfzIyKUOOjRN5rvqiMBcTgGIRhprjMOxjPrgTajgiUvL7iyDRy9lzHUH5gcEvIYQFxzrgUqjxsoynzsQm4W2vWzVxf6RaRz47CvvdVrqmNSu1TD1f61yNt0PWRUi4fKy7WnNss2UAJ7gTaiwNvocTeKkAAEHjTKjxwvaJmo7C2aGjMIAwo8nQPodCjZdOwP46CmcbUNJPk2BhQsucNdsQMwAUB1e/jmJ/2Dm6k3nmTKhx9aAHAADeOBNqCoFpErIT00eOVAogZGh+ss+ZUGPv6id/68xme1bO41w1BACBx3euHe6EGg6IlHyPU5MgLTFODVC8ONYBl0KNl47CXqo1eqSjjGpa4jp+pWpWyTiHZdC5rCjHqen5WltYX+Jt5GjFQJFx+Vh3dd+4AtQ+d0IN49RYxUsFAAgaZ0KNF9bHqUk3onCuOFLNHD/6MgCECU2G9jkTarx1FPbSRNXzdnZnWmNSlyvjK34YpwZAiLg6hkvsuGhu7mO+uRNqOCCs4tUEAASNM6HGi/xMk8A4NV4xmiaAMKP5yb5QhRqfFz/lfJqEIh6mhqoaAEXD1Yp4rn6yz5lQ4+pBb4v/cWpSryMoPzD4JYSw4FgHXAo1nsap8bAeH2OnJBymJq7jV6pyZRzEMuhc5n+cmgRXdln/VeF9TKCMt0DYRUi4fKy7umsmD9+BYeNOqPHUtMRR4xWvFAAgaJwJNV7Y7yjMODXZsNl/CQAAZ0KNrRGFYweEy3KcmjSrsDNNQm4kvLIrR9sCgFRcrWXnClD73Ak1hS6AY/iAAQCCxp1Q42m0YA/LZFkLElOMHI0onI/OZfn4YWRz9GYA7nL124GpYuxzJ9R4WYaDxrN0M5ADAFBsAh9qGJvBGyuvE+PUAEWLYx1wINRE5aCjcLrlE3emNTG3c1E7lEnnMivlsNxBOR9XP1E7h7Bw+Vh3dt8YUdg6Z0INfTLsSny5Oq8xAKB4BT7U+KlxtX1ZYKKTvLO/KHIgtlYLAIDsBD7UdPM9Bk3S9ZiEtzNx4un2p0nIR4/5dFNAAEDeOPrdwzQJ9mUUapYsWaIRI0aosrJSEydO1Pr165Mu+9BDD+nyyy/X4MGDNXjwYNXX16dcPlMcD3bxAQMABI3vULNixQo1NDRowYIF2rRpk8aMGaNJkyZp9+7dCZdfu3atrrnmGj377LNqbm5WbW2trrzySn344YdZF16SSj7r8m9rROGY5bNcnzHpRhTOcJwaH5NuZiof/WeYJgGAF67252NEYft8h5pFixZp1qxZmjlzps4//3wtXbpU/fr107JlyxIu/8gjj+g73/mOxo4dq1GjRulHP/qRurq61NTUlHXhe/I2SzcHjVdMkwAACBpfoaajo0MbN25UfX395ysoLVV9fb2am5s9rePw4cM6duyYTjnllKTLtLe3q62tLeZfMv46CvtYOMP1uTpHSS6YfHQOAgCEhq9Qs3fvXnV2dqq6ujrm/urqarW0tHhax6233qqhQ4fGBKN4jY2NGjhwYPRfbW1t2vXa6yjsb53ptpey+clCR+Gcje+S6D4CG4ACcPWrJx/f5WGT16ufFi5cqOXLl+vJJ59UZWVl0uXmzZunAwcORP/t3Lkz7bo5HuziAwYACJpyPwtXVVWprKxMra2tMfe3traqpqYm5XP/+Z//WQsXLtRvfvMbXXjhhSmXjUQiikQinsrkZ2hw681PHu8rNsaYaAfrgpYjz5czFst+AwByw1dNTUVFhcaPHx/Tybe7029dXV3S533/+9/X3XffrdWrV2vChAmZlzYVT2dFf52Jsz3PGmNSdk7OuPkpLz3mE40oDAD55+p3Tz6uZA0bXzU1ktTQ0KAZM2ZowoQJuvjii7V48WIdOnRIM2fOlCRNnz5dw4YNU2NjoyTpH//xHzV//nw9+uijGjFiRLTvTf/+/dW/f39rO8IBkZrfCopEgatEn7/OQanvoGIGYcGxDmQQaqZOnao9e/Zo/vz5amlp0dixY7V69epo5+EdO3aotPTzCqAHHnhAHR0d+tM//dOY9SxYsEB/93d/l13pJZV8dqq1NU5NbEfh1E9IOD9S3ARlORmnJsn2Uj4nrgN0ui/AdE1r1ie0tLC+tNvwsN9AULncD87VixRiv8vd3Md88x1qJGnOnDmaM2dOwsfWrl0b8/f777+fySZ883JAcMh4ly6wAQBQbII/95OvjsK2J7RMdF/xn/mLsYT5+JVSjPsN5AK/+hFWwQ81n7HTTdjuic+Y1OvL+HsnL9MkAEBxcPX7iKli7HMn1HBAWMXrCQAImsCHmkJOk5Do50MQwkCxVE3no6Nw7PaKY7+BXONQR1gFPtR08zYFgofOxFarA1NflZVx61PP2zn69iIAACikMDTNOLpbBeVOqHH1qLfE9zg16daXcUnyi0u4ERYc64ADocbXNAmeljEJb6dbNtE2TnQUtl9Vk8kvGN9NPWkWsjJOTR6mSch3ExdQKK4d636+iwPL5P47MGwCH2q6WZolAZ/hpQIABE3gQ02Jj4YQ6/2EA9tRuNAlOCH/HYXzsBGgCNAcj7AKfKjp5qV6Mt8dhU30f8kez3SahDwMVMeXIoACivkKcvTrKHYXHd3JPHMn1HA8WMXLCQAImsCHmu6OwrnoUpNu+cSPx3b8ysWIwtnWJnmr1fK/Xv/l6Lm9fEyTQFRDOKT+3gnG5yAEFTWhuGw93wIfarrZmqU7m+VdQgAAAASNM6EGqdkewyIoQ2IwdgfCgmMdcCDUdH+OPTWp+OxMnHacmjRXPxmZlFW9Fuaz9Fyj4reaM90yVsapyUeTE9W7CAmvx3pQPgcx38UBKbNfsWPxwIbAh5puND/ZFeJdBwAEVOBDTYmPOlf781kmGFGYNOBZ/OjLAOygTxzCKvChxpcc1OakW1curkLISxjgOxFwUlA+2mEYwyW2ydDNfcw3Z0JNLg6IMB9krn6JAADcFfhQE+0o7KUWxlNn4h6303WWTdRROK7jV8oOe2lLk2y72XUuy0X/o0xk0uHZ1vYAl6XuKByQD0IIOvm7NglpMQh8qOnmafA9vx2FMyqJG8K87wCAYAp+qGFsBk8YpwZwG8c64EKo+Yy35id/68lkrJb4jl+5mCYhdh0ZjFNjYfJPOzU5uR+HIt9NXECheP0MBeVTEIppEnrednUn88ydUGNrlu6YPjHhPcrCu+cAgKAKfKjxU+Nq/USdICQFIQwUyy+CfI/2Wyz7DeQaxzrCKvChpputK3psn2hzP01CbvClCLgpKJ/t2GkSAlJon2L3y819zDd3Qk0O1sMhBgBAcAQ+1ESnSbCV5H1U1aTvKJwmGGU8onB2HWyLJazle8TQYtlvINdSfZ6C0lcwbJ1ow7CP+RD4UNONmhoAAMIt8KGGsRm8YZwawG0c64ADoaZbAVqfPEyTkLr9yUZHYa9rsT1xmo2XOx9XPzFhHMLC6+cpKB+DoJQzG0yTYJ87ocbacHCMUwMAQBAFPtQUssY14S//AOSgYilithNz+t5eHrYBFAOOdYRV4ENNt0I0P3lZV8qrEDJcv+2rAmiWAVBssr3KMwjCsI/55k6oycF6OMYAAAiOwIea7nFqCtJROM19xqTpsJdhbMq22Sa+TIX6hZBBf+fstkdKRUikHMk8IJ+DMExGG4Z9zLfAh5pudBQGACDcAh9qGJrBm7COYRHW/Ub4cKwDDoSaqAJ0qkl48VNc01AuxovIpKNwqnnTMmvCsjDWTR6qXpkvDmHhdcyToNRA52Mcq0IL21QQ+eBMqKGjMAAA4Rb4UPP5fJaW+tT4mO4+fUdhk5NLupVlDUf8czJ57ayMKJznyxmD8gsVyJYLIwr3FMAiexJ7vilgQRwS+FDTrRjHqQEAAPnjTKhBamHtRBjW/Ub4cKwDToSaz8apsbQ2P31qEjXbxHfWSz1OTWay7Sjca5yaTMpgp/0pqzJ42gQ1bwgJr53ig/Ix8NMVIKhi3zI39zHfHAg1J9D8BABAuAU+1FDl6k1YX6ew7jfCh2MdcCDUdCuWEYXjh/5POV5EhlVBmfSYTzWGRSbFsDJOjeX1JdxGHpq4gGLgddynoDTlhGJ4DVoGrHMn1ND8BABAqAU+1BSyxjX9iMImJ8Eo285l8b/Usq6RylC+a1GC8gsVyFYuLlDItzD8wHR0twoq8KGmWyEG3wMAAMUj8KGGznHehPV1Cut+I3w41gEHQk23goxTk2CJ3mPI2J8mIZNqWdsdhW284PmYJoGOwggLzxNaBuSDYELQVZhpEuxzJ9TQURgAgFALfKgpKWhXYQAoDjQ/AQ6Emm6FGKcmYU2Or2kSMhynJsurlWzUQAXl6ifb+w0Uq9ha5uBf/hSGWnOmSbDPnVBD8xMAAKGWUahZsmSJRowYocrKSk2cOFHr169Pufzjjz+uUaNGqbKyUhdccIFWrVqVUWET6a5yLUxH4UT3xXb8ykWHvYyCV4rRRothROHc9RTueZOUinBI+b0TkM+B+92E+RGdC75DzYoVK9TQ0KAFCxZo06ZNGjNmjCZNmqTdu3cnXP6FF17QNddco+uvv16bN2/W1Vdfrauvvlpbt27NuvA9UVMDAEC4+Q41ixYt0qxZszRz5kydf/75Wrp0qfr166dly5YlXP4HP/iBvv71r+uWW27Reeedp7vvvlsXXXSRfvjDH2ZdeKmwIwoDAIDiUe5n4Y6ODm3cuFHz5s2L3ldaWqr6+no1NzcnfE5zc7MaGhpi7ps0aZJWrlyZdDvt7e1qb2+P/t3W1pa2bBs/2Jd2GS96rifdOn/zRqta247G3PfGrs/L+qtXd2nHvsNJn7/7YLvu+uXrvsu4//Cx6O0Hf7tdVf0r0j7neFdX9Pai/3pbfSvKPn+s03+VVPvxrozK3tP/fHIkevvD/UeyXl8iqfYbcElnj6rl+/5rmyr7JD7W2493xfz9d794vSivnDp49PPvufuffVeDT0r/PRc0nxzqiN5+6LfbddrJkQKWJjeOHv40r9vzFWr27t2rzs5OVVdXx9xfXV2tt956K+FzWlpaEi7f0tKSdDuNjY266667kj7+5TNP1W/f2StJOrmyj3TgqN5u9f7ClZQkb1rquZ5069zwwSfa8MEnSR9/4Xcfp3z+gSPH9JP/fj/lMun88pVdvp+z/OWdWW1Tko53mazL3tPeTzusri8RG/sNBMFj670f6w+/8H7uCmLJyi3+v+eC5levflToIuREV3vyH/a54CvU5Mu8efNianfa2tpUW1sb/XvW5WdqUL8+uuzsKh04ckz/9XqrjIz6lJXq7CH99eZHbaooK9PkC09X8+/26pKzq/TMm7u1/0iHKsvL9I0LT9dv3mjVRweO6qTIiV8zhzs61e+zX/HHPqu56FN24ufLofbO6N/dj0X6lKq8NPHPmyMdXYr0KVX3w0c6ulTZp1RHjnXqpIpyHeo4LmMU3XYmDrV3qn+k3Fenv0PtnSm3eai9UxXlpSqRVF5Woo7jXTrWaRQpL1X78a7oc9Otx48SlejT9uPW1peIzfICxczPsR6Ez0UQypitTL7Lg+TooU81f3H+tucr1FRVVamsrEytra0x97e2tqqmpibhc2pqanwtL0mRSESRSPJquIryUk2beEb07wu/MCjm8f/rwqHR22cP6S9JOuu0/jHLnPWV2L8BAIBdbW1tmp/H7fnqKFxRUaHx48erqakpel9XV5eamppUV1eX8Dl1dXUxy0vSmjVrki4PAACQCd/NTw0NDZoxY4YmTJigiy++WIsXL9ahQ4c0c+ZMSdL06dM1bNgwNTY2SpLmzp2rr3zlK7rvvvs0efJkLV++XBs2bNCDDz5od08AAECo+Q41U6dO1Z49ezR//ny1tLRo7NixWr16dbQz8I4dO1Ra+nkF0CWXXKJHH31Ud9xxh773ve/pnHPO0cqVKzV69Gh7ewEAAEKvxNgYGjbH2traNHDgQB04cEADBgwodHEAAIAH+T5/OzP3EwAACDdCDQAAcAKhBgAAOIFQAwAAnECoAQAATiDUAAAAJxBqAACAEwg1AADACYQaAADgBN/TJBRC96DHbW1tBS4JAADwqvu8na/JCwIRaj7++GNJUm1tbYFLAgAA/Pr44481cODAnG8nEKHmlFNOkXRissx8vChIrq2tTbW1tdq5cyfzcBUY70Xx4L0oLrwfxePAgQMaPnx49Dyea4EINd2zfg8cOJADtEgMGDCA96JI8F4UD96L4sL7UTy6z+M5305etgIAAJBjhBoAAOCEQISaSCSiBQsWKBKJFLooocd7UTx4L4oH70Vx4f0oHvl+L0pMvq6zAgAAyKFA1NQAAACkQ6gBAABOINQAAAAnEGoAAIATij7ULFmyRCNGjFBlZaUmTpyo9evXF7pIzmlsbNSXvvQlnXzyyRoyZIiuvvpqbdu2LWaZo0ePavbs2Tr11FPVv39//cmf/IlaW1tjltmxY4cmT56sfv36aciQIbrlllt0/PjxfO6KcxYuXKiSkhLddNNN0ft4L/Lnww8/1F/8xV/o1FNPVd++fXXBBRdow4YN0ceNMZo/f75OP/109e3bV/X19XrnnXdi1rFv3z5NmzZNAwYM0KBBg3T99dfr008/zfeuBFpnZ6fuvPNOjRw5Un379tVZZ52lu+++O2Y+Id6L3Hn++ec1ZcoUDR06VCUlJVq5cmXM47Ze+1dffVWXX365KisrVVtbq+9///v+C2uK2PLly01FRYVZtmyZef31182sWbPMoEGDTGtra6GL5pRJkyaZn/zkJ2br1q1my5Yt5hvf+IYZPny4+fTTT6PL3HDDDaa2ttY0NTWZDRs2mC9/+cvmkksuiT5+/PhxM3r0aFNfX282b95sVq1aZaqqqsy8efMKsUtOWL9+vRkxYoS58MILzdy5c6P3817kx759+8wZZ5xh/vIv/9K89NJLZvv27ebpp5827777bnSZhQsXmoEDB5qVK1eaV155xXzzm980I0eONEeOHIku8/Wvf92MGTPGvPjii+a3v/2tOfvss80111xTiF0KrHvuuceceuqp5le/+pV57733zOOPP2769+9vfvCDH0SX4b3InVWrVpnbb7/dPPHEE0aSefLJJ2Met/HaHzhwwFRXV5tp06aZrVu3mscee8z07dvX/Pu//7uvshZ1qLn44ovN7Nmzo393dnaaoUOHmsbGxgKWyn27d+82ksxzzz1njDFm//79pk+fPubxxx+PLvPmm28aSaa5udkYc+KgLy0tNS0tLdFlHnjgATNgwADT3t6e3x1wwMGDB80555xj1qxZY77yla9EQw3vRf7ceuut5rLLLkv6eFdXl6mpqTH/9E//FL1v//79JhKJmMcee8wYY8wbb7xhJJmXX345usyvf/1rU1JSYj788MPcFd4xkydPNn/1V38Vc98f//Efm2nTphljeC/yKT7U2Hrt77//fjN48OCY76hbb73VnHvuub7KV7TNTx0dHdq4caPq6+uj95WWlqq+vl7Nzc0FLJn7Dhw4IOnziUQ3btyoY8eOxbwXo0aN0vDhw6PvRXNzsy644AJVV1dHl5k0aZLa2tr0+uuv57H0bpg9e7YmT54c85pLvBf59Itf/EITJkzQn/3Zn2nIkCEaN26cHnrooejj7733nlpaWmLei4EDB2rixIkx78WgQYM0YcKE6DL19fUqLS3VSy+9lL+dCbhLLrlETU1NevvttyVJr7zyitatW6errrpKEu9FIdl67Zubm/X7v//7qqioiC4zadIkbdu2TZ988onn8hTthJZ79+5VZ2dnzBezJFVXV+utt94qUKnc19XVpZtuukmXXnqpRo8eLUlqaWlRRUWFBg0aFLNsdXW1Wlpaosskeq+6H4N3y5cv16ZNm/Tyyy/3eoz3In+2b9+uBx54QA0NDfre976nl19+WX/913+tiooKzZgxI/paJnqte74XQ4YMiXm8vLxcp5xyCu+FD7fddpva2to0atQolZWVqbOzU/fcc4+mTZsmSbwXBWTrtW9padHIkSN7raP7scGDB3sqT9GGGhTG7NmztXXrVq1bt67QRQmlnTt3au7cuVqzZo0qKysLXZxQ6+rq0oQJE3TvvfdKksaNG6etW7dq6dKlmjFjRoFLFy4/+9nP9Mgjj+jRRx/V7/3e72nLli266aabNHToUN4LxCja5qeqqiqVlZX1uqqjtbVVNTU1BSqV2+bMmaNf/epXevbZZ/WFL3when9NTY06Ojq0f//+mOV7vhc1NTUJ36vux+DNxo0btXv3bl100UUqLy9XeXm5nnvuOf3rv/6rysvLVV1dzXuRJ6effrrOP//8mPvOO+887dixQ9Lnr2Wq76iamhrt3r075vHjx49r3759vBc+3HLLLbrtttv053/+57rgggt03XXX6eabb1ZjY6Mk3otCsvXa2/reKtpQU1FRofHjx6upqSl6X1dXl5qamlRXV1fAkrnHGKM5c+boySef1DPPPNOrCnD8+PHq06dPzHuxbds27dixI/pe1NXV6bXXXos5cNesWaMBAwb0OjEgua997Wt67bXXtGXLlui/CRMmaNq0adHbvBf5cemll/Ya2uDtt9/WGWecIUkaOXKkampqYt6LtrY2vfTSSzHvxf79+7Vx48boMs8884y6uro0ceLEPOyFGw4fPqzS0tjTVVlZmbq6uiTxXhSSrde+rq5Ozz//vI4dOxZdZs2aNTr33HM9Nz1JKv5LuiORiHn44YfNG2+8Yb797W+bQYMGxVzVgezdeOONZuDAgWbt2rXmo48+iv47fPhwdJkbbrjBDB8+3DzzzDNmw4YNpq6uztTV1UUf776M+MorrzRbtmwxq1evNqeddhqXEVvQ8+onY3gv8mX9+vWmvLzc3HPPPeadd94xjzzyiOnXr5/56U9/Gl1m4cKFZtCgQeY///M/zauvvmr+8A//MOGlrOPGjTMvvfSSWbdunTnnnHO4jNinGTNmmGHDhkUv6X7iiSdMVVWV+e53vxtdhvcidw4ePGg2b95sNm/ebCSZRYsWmc2bN5sPPvjAGGPntd+/f7+prq421113ndm6datZvny56devn1uXdBtjzL/927+Z4cOHm4qKCnPxxRebF198sdBFco6khP9+8pOfRJc5cuSI+c53vmMGDx5s+vXrZ/7oj/7IfPTRRzHref/9981VV11l+vbta6qqqszf/M3fmGPHjuV5b9wTH2p4L/Lnl7/8pRk9erSJRCJm1KhR5sEHH4x5vKury9x5552murraRCIR87Wvfc1s27YtZpmPP/7YXHPNNaZ///5mwIABZubMmebgwYP53I3Aa2trM3PnzjXDhw83lZWV5swzzzS33357zOW/vBe58+yzzyY8R8yYMcMYY++1f+WVV8xll11mIpGIGTZsmFm4cKHvspYY02NIRgAAgIAq2j41AAAAfhBqAACAEwg1AADACYQaAADgBEINAABwAqEGAAA4gVADAACcQKgBAABOINQAAAAnEGoAAIATCDUAAMAJhBoAAOCE/wN9rRdm05Fz0QAAAABJRU5ErkJggg==",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print(\"'binary' vectorized question:\",\n",
" list(binary_vectorize_layer(first_question).numpy()))\n",
"\n",
"plt.plot(binary_vectorize_layer(first_question).numpy())\n",
"plt.xlim(0,1000)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:29.795041Z",
"iopub.status.busy": "2024-08-16T07:38:29.794455Z",
"iopub.status.idle": "2024-08-16T07:38:29.810557Z",
"shell.execute_reply": "2024-08-16T07:38:29.809674Z"
},
"id": "Lu07FsIw2yH5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"'int' vectorized question: [1011 773 9 2456 8 1863 2362 690 1267 4 40 5 1 1011\n",
" 196 12 74 13 72 33 2 98 105 14 3 70 9611 3\n",
" 34 888 202 773 107 8 41 242 40 58 291 90 3 196\n",
" 191 10 2 182 6 668 6 13 30 1187 12 773 22 42\n",
" 1 28 5 140 29 5213 15 29 1 28 51 1 1 1\n",
" 7 23 30 3 291 10 67 6 32 65 185 166 102 14\n",
" 2 65 6 1 193 9 2784 45 2410 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n",
" 0 0 0 0 0 0 0 0 0 0 0 0]\n"
]
}
],
"source": [
"print(\"'int' vectorized question:\",\n",
" int_vectorize_layer(first_question).numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wgjeF9PdS7tN"
},
"source": [
"As shown above, `TextVectorization`'s `'binary'` mode returns an array denoting which tokens exist at least once in the input, while the `'int'` mode replaces each token by an integer, thus preserving their order.\n",
"\n",
"You can lookup the token (string) that each integer corresponds to by calling `TextVectorization.get_vocabulary` on the layer:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:29.814267Z",
"iopub.status.busy": "2024-08-16T07:38:29.813670Z",
"iopub.status.idle": "2024-08-16T07:38:29.870188Z",
"shell.execute_reply": "2024-08-16T07:38:29.869449Z"
},
"id": "WpBnTZilS8wt"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1289 ---> roman\n",
"313 ---> source\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Vocabulary size: 10000\n"
]
}
],
"source": [
"print(\"1289 ---> \", int_vectorize_layer.get_vocabulary()[1289])\n",
"print(\"313 ---> \", int_vectorize_layer.get_vocabulary()[313])\n",
"print(\"Vocabulary size: {}\".format(len(int_vectorize_layer.get_vocabulary())))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NYGb7z_bfpGm"
},
"source": [
"### Train the model\n",
"\n",
"It's time to create your neural network.\n",
"\n",
"For the `'binary'` vectorized data, define a simple bag-of-words linear model, then configure and train it:"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:29.873734Z",
"iopub.status.busy": "2024-08-16T07:38:29.873238Z",
"iopub.status.idle": "2024-08-16T07:38:30.014685Z",
"shell.execute_reply": "2024-08-16T07:38:30.013567Z"
},
"id": "L9D0Gngw8Cwr"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcwAAAEnCAYAAAAkWHPHAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1QTd/o/8HcCIYSAAVG5Geul1X5rMbpo1RZEREFXLCsFsautfrf65egqda09anXtnqLtV2u324tttW7bs2otXipbvLXWyvYo2INtwbt4ab1xMWAJAUG5PL8//GW+DEnMJOamPq9zcjx+5pmZ5zOZmYfMfDKRERGBMcYYY3ck93QCjDHG2L2ACyZjjDEmARdMxhhjTAIumIwxxpgEvh0bioqK8Pe//90TuTDGGGNeYf78+Rg+fLiozewT5uXLl7Ft2za3JcUY85wrV67w8e4mhw8fxuHDhz2dBpNg27ZtuHz5slm72SdMk61bt7o0IcaY523ZsgWZmZl8vLtBRkYGAD633gtkMpnFdr6HyRhjjEnABZMxxhiTgAsmY4wxJgEXTMYYY0wCLpiMMealNm7cCJlMJrwCAwMtxl28eBFPP/006urqUF1dLZpn0KBBaGpqMpunY5xMJsPgwYNd3SWnWLRoEXJzc61Oa9+nYcOGOW29XDAfMPX19XjkkUeQkpLi6VS8Kpf2vDUvb8fbzXU+/PBDEBHq6+vNppWUlGDw4MFISkpCp06d0KVLFxARiouLhenz5s0zm88UV1RUhNDQUBARjhw54vK+OMPMmTOxePFi/PWvfzWb9r//+78gIhARfHx8nLpepxXMwMBAxMbGOmtxXr9eZ3JnH4gIbW1taGtrc8v67tQ3d+cilbfmZYk37f+83dyvrq4OEyZMwDPPPIM5c+aYTVcqlQgNDcXatWuxefNmD2ToGn369MGOHTuwYsUKbNmyxW3rtfo9THZ/CgoKwvnz5z2dBgDvyqU9b83L2/F2c79Vq1ahsrISy5Ytszjd398fmzZtwu9//3tkZWUhJiYGffv2dXOWrqHT6ZCeno6XXnoJaWlp8PV1fTnjS7KMMXYPIiKsX78eQ4cORWRkpNW45ORkLF26FEajERkZGRbvZ96rJk6ciCtXrmDXrl1uWd9dF8zVq1dDJpOhoaEBhw4dEm60dqz2er0e2dnZ6NmzJ/z8/NC1a1ekpaWhpKREiImNjRXdrJ06dSoAYPTo0aL22tpayeu1pra21uyG9/LlywEALS0tovb09HS7+mFSU1OD+fPno0+fPlAqlejevTtGjx6Nzz77DI2NjZL70H45fn5+CAkJwbhx43DgwAEhJi8vT5TzmTNnMGnSJISGhgpt69evF8W0P3CCg4PNtofpJZfLceXKFWHb5ObmYsyYMQgPD4dKpUJ0dDTeeecd0aU4W33rmG/Hg9iRPv/666/IzMxEcHAwQkNDkZKSYvcnHmt52bsuU/9lMhm6d++O4uJiJCYmIigoCAEBAUhISMChQ4eE+OXLlwvx7S8V7t27V2jv0qWL5O3rbrzd3K+0tBRVVVXQ6XQ2Y1999VUkJSXh6NGjmDt3rqTlu/IYtOc8eicDBw4EAHz99dd2zecw6iA3N5csNNukVqvpqaeesjitvLycHnroIQoLC6Ndu3aR0Wik48ePU3x8PPn7+1NhYaEQW1JSQmq1mnQ6HdXX1xMRUVNTEw0dOpQ2b95s13qlGDt2LMnlcjp37pzZtOHDh9Pnn3/uUD8qKiqoV69eFB4eTvn5+VRXV0eVlZWUk5NDAOjtt9+W1AfTcsLCwig/P58MBgOdOXOG0tLSSCaT0ccffyyKT01NJQAUHx9PBw4coIaGBjp8+DD5+PiQXq8XxTQ2NgrzaTQaMhqNomW99tprBIBef/11oS0/P19ou379Oun1enr33XdJLpfTggULzPK39f5YysXRPqemplJhYSHV19fTvn37SKVS0ZAhQ6yu+04s5eXIunQ6HanVaho+fLgQX1xcTAMGDCA/Pz8qKCgQxVvbXjExMRQaGmrWfrf7v6PHuzX3y3ZLSEigzp07U1FRkdSu25Senk7p6el2zbNhwwYCQB9++KHVae2Pz/aKi4tJo9EI/9fr9aTVagkAbdy4UWgvKioy20auPAbtOY/aYjAYCADFxcVZnO7j40NDhw6VvDwTAJSbm2ve3rHBFQVz2rRpBIA2bdokaq+oqCClUkkxMTGi9i1bthAASktLo7a2Npo2bRq98sordq9Xim+//ZYA0OzZs0XtBw8epB49elBzc7ND/Zg+fbrVjT527FjJBdO0nI5/LDQ1NVFkZCSpVCqqrKwU2k077u7du632WUrBzM3NJZlMRtOnTxfNm5+fTyNHjjRb5tSpU0mhUJDBYBC1O1IwHe1zfn6+KD49PZ0ACH8o2MPWiV/qunQ6HQGgn3/+WdR+9OhRAkA6nU7Ufr8XzHtlu8XHx1NISIhdJ29bnF0wV61aRQBozZo1FuftWDCJbhdHhUJBarWaTp06JbR13EauPAbtrQe2yGQyevjhhy1Oc3bBdMs9zLy8PMjlcrPh5uHh4ejfvz9+/PFH4ZIfcPshxUuWLMGXX36J2NhY1NTUICcnxyW5JSYmYtCgQfjss89QU1MjtL/55puYN2+e6FKNPf3YsWMHAGDcuHFm69yzZ4/FYd6WmJYzfvx4UbtSqURiYiIaGxstXo544oknJC3fpLa2VviO1w8//IBp06ZhxIgRWLt2rSguJSVFdEnGRKfTobm5GSdOnLBrvZY42uchQ4aI/q/VagEA5eXld53T3axLrVYLl45MoqOjERkZidLSUlRUVDg9P291r2y3goICXL9+3eznnbyJ6bK3QqGQPM+wYcOwevVqNDQ0ICMjA42NjRbjXHkM2lsPbPH19bXaD2dzecG8efMmDAYD2traoNFozO6P/fTTTwCAs2fPiubLycnB0KFDUVhYiIyMDMjlrkv1pZdewo0bN/DBBx8AAMrKyvD9999jxowZDvXDFOvv74+goCCH87K1nLCwMABAZWWl2TS1Wu3QOi9duoTU1FRotVp8+eWX8PPzE003GAxYtmwZoqOjERISIvT/5ZdfBgDcuHHDofWa3E2fNRqN6P+m3F3xNQd71hUcHGxxGd26dQMAXLt2zcnZeS/ebs7j7+8PAGhubrZrvuzsbGRmZuL48eMWv4riymPQ0XpwJy0tLVCpVJLj74bTqpC1n0NRKpUIDg6Gr68vmpubhS+UdnwlJCSI5isoKIDBYEB0dDRmz56N0tJSu9Zrj8zMTGi1Wrz//vu4efMm3nrrLcycOVO0s9jTD6VSCY1Gg6amJhiNRpvrv9O2u9NyqqqqANz+y8wZjEYjUlJS0NzcjJ07d6Jz585mMRMmTEBOTg5mzpyJsrIytLW1gYjw9ttvA7g9cq89e98fd/fZHWpqasy2C/B/J3xTAQAAuVyOW7dumcXW1tZaXLYz9n9vxdvtziIiIgDc/iPWXuvXr0e/fv3wySefYMOGDaJprjwGHa0H1tTV1YGIhG3hak4rmAEBAaIdtl+/fli3bh0AIC0tDS0tLaLRbSYrV65Ejx490NLSIrT98ssveOGFF7B9+3Z89dVXUKlUSE1NhV6vt2u9Uvn6+uLFF1/EtWvX8NZbb+GLL75Adna2WZw9/Zg4cSIAYPfu3WaxgwYNwl/+8hdJfTAtp+Ow6Zs3b2L//v1QqVRITk62q7+WtLa2YvLkyTh9+jS2b98u+q5Weno68vLy0NraikOHDiE8PBzZ2dno2rWrcOKxdknEkffHXX12l6amJuGpKybHjh1DeXk5dDqd6GCPiIjA1atXRbGVlZW4dOmSxWU7Y//3Vrzd7uzxxx8HALsuX5oEBgZi+/btUKvVwpW19lx5DNpbD+7E9J6btoXLdbyp6egggLFjx5JGo6FLly5RYWEh+fr60smTJ4mIqKqqivr06UO9e/em3bt3U21tLdXU1NBHH31EAQEBopurRqORBgwYQP/+97+FtoKCAlIoFDRixAi6deuW5PXao66ujjQaDclkMnr++ectxtjTD9Mos4iICNq5cyfV1dXR5cuXadasWRQWFkYXL16U1IeOo9Xq6upEo9XWrVsnytHaoAtbMXPnziUA9Omnn5rFP/PMM7Rjxw4iIho1ahQBoFWrVpFer6cbN27Qd999Rz169CAAtG/fPtG8tt4fKaNkHe3zwoULLQ4ckcLW4BWp69LpdKTRaCgxMVHSaM85c+YQAHrvvffIaDTSuXPnaNKkSRQVFWVx8Mrd7v/uHvRzr2y3e2GUbFtbG3Xr1s3q4CVLg3462rhxIwGwOUrWmcegPedRIqIpU6YQALpw4YJZ/p9//jkBEM5PHXntKNnTp09TXFwcqdVq0mq1ZiO3ampqaP78+dS7d29SKBTUtWtXSkpKEp1g//znPxMA4XXs2DHS6/WiNgCUk5Mjeb32ePnllwkAlZaWWo2R0g+T6upqmjdvHvXq1YsUCgVFRETQ5MmTqaysTBRnqw8dl6PRaCg5OZn2798vxBQVFZltp47v444dO8ymT5kyhY4cOWJx3vYv0w6p1+spKyuLtFotKRQKCgsLo+nTp9OiRYuE2Paj3Kz1zVoud9vnJUuWEBGZtY8fP97qeyplGzm6Lp1OR1FRUXTy5ElKTk6moKAgUqlUFB8fTwcPHjRbf21tLc2YMYMiIiJIpVJRbGwsFRcXU0xMjLD8hQsXSt53bHFWwbzftltcXJzXj5IlInrllVfI19eXrl69KrRZOmfeaeTprFmzLP5R4cpj0J7z6KhRoygwMJBaWlrMpmVkZFBUVJTZBykTry2YjDFzphO/t/LW493bt5sjXFEwa2trKSoqirKyspyRotf57bffSKVS0YwZM8ymlZSUkEwms/j9fJN78msljDHGnE+j0SA/Px/btm3DmjVrPJ2OUxERsrOz0alTJ7OvFV64cAFpaWlYvHgxJk+e7LacuGAyxpiXmzVrltXfwxw0aBCOHDmCPXv2oK6uzgPZuUZVVRUuXLiA/fv3m43IXbt2LVasWIEVK1aYzdf+9zBbW1udmtN9WzCtPRe1/etvf/ubp9NkbuTOfcL0zNLS0lJcvXoVMpkMS5cudcqy72e83cSmTp0q+rqFpd/DBICePXti586d6NSpk5szdJ3w8HAcPHgQ/fv3N5u2cuVKq58s2/8eJhHh8OHDTsvp3nvisERk4ftb7MHmzn1iwYIFWLBggdvWd7/g7ca82X37CZMxxhhzJi6YjDHGmARcMBljjDEJuGAyxhhjEnDBZIwxxiSwOkr2fniaP2NMGj7e3Ye39b3LasHMzc11Zx6MMQ8oKirCP/7xDz7e3cD0E3jtf6mIeafMzEyL7VYL5qRJk1yWDGPMe/zjH//g490Ntm7dCoDPrfcCawWT72EyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4AL5l0KDAw0+8WL1atXezoth9xPfWHsfrBx40bR8Wjp570A4OLFi3j66adRV1eH6upq0TyDBg1CU1OT2Twd42QyGQYPHuzqLjnFokWLrI7sbv/zXjKZDMOGDXPaerlg3qX6+nr8/PPPAIDU1FQQ0T37awv3U18Yu598+OGHVn/eq6SkBIMHD0ZSUhI6deqELl26gIhQXFwsTJ83b57ZfKa4oqIihIaGgohw5MgRl/fFGWbOnInFixfjr3/9q9m09j/v5ePj49T1csF8wAQGBiI2NtbTaTBmlaf3UU+v3x51dXWYMGECnnnmGcyZM8dsulKpRGhoKNauXYvNmzd7IEPX6NOnD3bs2IEVK1Zgy5YtblsvF0zGGLtHrVq1CpWVlVi2bJnF6f7+/ti0aRPkcjmysrJQVlbm5gxdR6fTIT09HS+99BJaWlrcsk4umIwxdg8iIqxfvx5Dhw5FZGSk1bjk5GQsXboURqMRGRkZFu9n3qsmTpyIK1euYNeuXW5ZHxdMF8nLyxPdeP7111+RmZmJ4OBghIaGIiUlBefPnxfiV69eLcR2794dxcXFSExMRFBQEAICApCQkIBDhw4J8cuXLxfi218+2rt3r9DepUsXs+U3NDTg0KFDQoyvr9WHPdnU0tKC3NxcjBkzBuHh4VCpVIiOjsY777yDtrY2AEBtba3ZwILly5cL87dvT09PF5at1+uRnZ2Nnj17ws/PD127dkVaWhpKSkqsbuMzZ85g0qRJCA0NFdqqq6sd7h+zrqamBvPnz0efPn3g5+eHkJAQjBs3DgcOHBBinL2P3ovHiCuVlpaiqqoKOp3OZuyrr76KpKQkHD16FHPnzpW0fCnvsb3nORMpx7cUAwcOBAB8/fXXds3nMOogNzeXLDSzO/j5558JAKWmpppNS01NFaYVFhZSfX097du3j1QqFQ0ZMsQsXqfTkVqtpuHDhwvxxcXFNGDAAPLz86OCggJRvFqtpqeeespsOTExMRQaGmrWbi1eSl86ys/PJwD0+uuv0/Xr10mv19O7775LcrmcFixYIIpNTk4muVxO586dM1vO8OHDadOmTcL/y8vL6aGHHqKwsDDatWsXGY1GOn78OMXHx5O/vz8VFhaK5jdt4/j4eDpw4AA1NDTQ4cOHycfHh/R6vc1+PMgcOd4rKiqoV69eFBYWRvn5+WQwGOjMmTOUlpZGMpmMPv74Y1G8s/dRTx8jCQkJ1LlzZyoqKrIaY0l6ejqlp6fbNc+GDRsIAH344YdWp73++usW5y0uLiaNRiP8X6/Xk1arJQC0ceNGob2oqMhsO9j7HttznrP3+L4Tg8FAACguLs7idB8fHxo6dKjk5ZkAoNzcXPP2jg1cMO0npWDm5+eL2tPT0wmA2Qldp9MRAPr5559F7UePHiUApNPpRO2eLpgjR440a586dSopFAoyGAxC29dff00AaPbs2aLYgwcPUlRUFN26dUtomzZtGgEQFVGi2wexUqmkmJgYUbtpG+/evdtmzkzMkeN9+vTpBIA2b94sam9qaqLIyEhSqVRUWVkptLuiYHryGImPj6eQkBC7TuxEzi+Yq1atIgC0Zs0ai/N2LJhEt4ujQqEgtVpNp06dEto6bgd732N7znP2Ht+2yGQyevjhhy1Oc3bB5EuybjJkyBDR/7VaLQCgvLzcLFatVguXGkyio6MRGRmJ0tJSVFRUuC5RO6SkpIguz5jodDo0NzfjxIkTQltSUhKio6Px2WefoaamRmh/8803MXfuXCgUCqEtLy8PcrkcKSkpouWGh4ejf//++PHHH3HlyhWz9T7xxBPO6BazYceOHQCA8ePHi9qVSiUSExPR2Njo8ktknjxGCgoKcP36dQwfPtxl65DCdC+y/bFjy7Bhw7B69Wo0NDQgIyMDjY2NFuMcfY+lnOccPb6t8fX1tdoPZ+OC6SYajUb0fz8/PwAQ7vW1FxwcbHEZ3bp1AwBcu3bNydk5xmAwYNmyZYiOjkZISIhwH+Pll18GANy4cUMUP2/ePNy4cQMffPABAKCsrAzfffcd/ud//keIuXnzJgwGA9ra2qDRaMzuf/70008AgLNnz5rlo1arXdVV9v+Z3h9/f38EBQWZTQ8LCwMAVFZWujSPe+UYcSV/f38AQHNzs13zZWdnIzMzE8ePH7f4VZS7eY9tnefu5vi2pqWlBSqVSnL83eCC6YVqampw+6qAmOkkYDopAIBcLsetW7fMYmtray0u25k/XjthwgTk5ORg5syZKCsrQ1tbG4hI+N2/jn2YMmUKwsLC8P777+PmzZt46623MG3aNISEhAgxSqUSwcHB8PX1RXNzs/AF5I6vhIQEp/WDSadUKqHRaNDU1ASj0Wg2vaqqCsDtTwsmrthH75VjxJUiIiIA3P7D1V7r169Hv3798Mknn2DDhg2iaY68x1I5+/iuq6sDEQnbwtW4YHqhpqYm4SkdJseOHUN5eTl0Op1o54iIiMDVq1dFsZWVlbh06ZLFZQcEBIhOHv369cO6devsys/X1xcnTpzAoUOHEB4ejuzsbHTt2lU40Vi7PKJUKjF79mxcu3YNb731FjZt2oQXX3zRLC4tLQ0tLS2iEY8mK1euRI8ePdz2vStmbuLEiQBgNpT/5s2b2L9/P1QqFZKTk4V2V+yj3n6MuMPjjz8OAHZdvjQJDAzE9u3boVarhSs+7dn7HtvDmce36X01bQtX44LphTQaDV555RUUFRWhoaEBR44cwdSpU+Hn54d33nlHFJuUlITy8nK8//77qK+vx/nz5/Hiiy+K/sJu73e/+x3Kyspw+fJlFBUV4cKFC4iLi7M7Rx8fH4wcORKVlZV48803UV1djcbGRhw4cAAfffSR1flmz54NlUqFpUuXYvTo0Xj44YfNYt544w306dMHf/rTn7Bnzx4YDAZcv34da9euxWuvvYbVq1d77VD/B8Ebb7yBXr16Yd68edi5cyeMRiPKysrwxz/+ERUVFXjnnXeEy3aAa/ZRTx4jo0aNQmhoKA4fPuzoJnQKnU6Hbt26obS01KH5+/fvj7Vr11qcZu97bA97j++pU6dCJpPhl19+MVuW6WsoSUlJDuVit46jgHiUrH3UajUBEL3efPNNKioqMmtfsmQJEZFZ+/jx44Xl6XQ6ioqKopMnT1JycjIFBQWRSqWi+Ph4OnjwoNn6a2tracaMGRQREUEqlYpiY2OpuLiYYmJihOUvXLhQiD99+jTFxcWRWq0mrVYrGmFnqS/WXqdOnSK9Xk9ZWVmk1WpJoVBQWFgYTZ8+nRYtWiTEWRrxNnPmTAJA//nPf6xu15qaGpo/fz717t2bFAoFde3alZKSkmjfvn1CjKVtzPuufRw93qurq2nevHnUq1cvUigUpNFoKDk5mfbv328W68x9lMizxwgRUVxcnFeMkiUieuWVV8jX15euXr0qtOn1erNj4k4jT2fNmmVxtLCU99jR85yU49tk1KhRFBgYSC0tLWbTMjIyzEbZt8dfK7nPmU4G97NPPvnE7qHjzDXuxeP9Xj1GXFEwa2trKSoqirKyspyRotf57bffSKVS0YwZM8ymlZSUkEwmM/vqS3v8tRJ2z/voo48wf/58T6fB2D1Po9EgPz8f27Ztw5o1azydjlMREbKzs9GpUyfk5OSIpl24cAFpaWlYvHgxJk+e7LacuGAyl1u/fj0mTpyI+vp6fPTRR/jtt98wadIkT6fF2D1j1qxZVn8Pc9CgQThy5Aj27NmDuro6D2TnGlVVVbhw4QL2799vNiJ37dq1WLFiBVasWGE2X/vfw2xtbXVqTlwwvYTpOZalpaW4evUqZDIZli5d6um0nCYvLw8hISH48MMP8cUXX/CgHWa3+/0YsWTq1Kmir1tY+j1MAOjZsyd27tyJTp06uTlD1wkPD8fBgwfRv39/s2krV660+smy/e9hEpFTB2fxWctLLFiw4L79seYZM2ZgxowZnk6D3ePu52OE3Rv4EyZjjDEmARdMxhhjTAIumIwxxpgEXDAZY4wxCawO+tmyZYs782CMeUBRUREAPt7dwfTMV97W9y6rBTMzM9OdeTDGPIiPd/fhbX3vkv3/xwAxxryE6aEO/EmEMe/C9zAZY4wxCbhgMsYYYxJwwWSMMcYk4ILJGGOMScAFkzHGGJOACyZjjDEmARdMxhhjTAIumIwxxpgEXDAZY4wxCbhgMsYYYxJwwWSMMcYk4ILJGGOMScAFkzHGGJOACyZjjDEmARdMxhhjTAIumIwxxpgEXDAZY4wxCbhgMsYYYxJwwWSMMcYk4ILJGGOMScAFkzHGGJOACyZjjDEmARdMxhhjTAIumIwxxpgEXDAZY4wxCbhgMsYYYxJwwWSMMcYk4ILJGGOMScAFkzHGGJOACyZjjDEmARdMxhhjTAIumIwxxpgEXDAZY4wxCXw9nQBjD7Lvv/8eRUVForbTp08DAFauXClqHz58OEaMGOG23BhjYjIiIk8nwdiDav/+/Rg9ejQUCgXkcssXfNra2tDc3Ixvv/0WiYmJbs6QMWbCBZMxD2pra0N4eDj0ev0d47p06YLKykr4+Pi4KTPGWEd8D5MxD5LL5ZgyZQr8/Pysxvj5+WHq1KlcLBnzMC6YjHnYs88+i1u3blmdfuvWLTz77LNuzIgxZglfkmXMC/Ts2RMXL160OE2r1eLixYuQyWRuzoox1h5/wmTMCzz33HNQKBRm7QqFAtOnT+diyZgX4E+YjHmB06dP47/+678sTjt+/Dj69+/v5owYYx3xJ0zGvMCjjz6K/v37m32SfOyxx7hYMuYluGAy5iWef/550UhYhUKBadOmeTAjxlh7fEmWMS9x+fJlPPTQQzAdkjKZDBcuXEDPnj09mxhjDAB/wmTMa2i1WgwdOhRyuRxyuRxDhw7lYsmYF+GCyZgXee655yCTySCXy/Hcc895Oh3GWDt8SZYxL1JdXY3w8HAAQHl5Obp16+bhjBhjJjYLJn//izHG2IPA1udHST/vNW/ePAwfPtwpCTF2r3n77bcBAH/5y1/csr7vv/8eMpkMcXFxblmfN8nMzOTzDXO7oqIi/OMf/7AZJ+kTZm5uLiZNmuS05Bi7l2RkZAAAtm7d6pb1GY1GAEBQUJBb1udN+HzDPGHLli3IzMx0zidMxpj7PIiFkrF7AY+SZYwxxiTggskYY4xJwAWTMcYYk4ALJmOMuUF1dTVkMpnwGjRoEJqammzGyWQyDB482AMZs464YD7A6uvr8cgjjyAlJcXTqXhVLq70oPSTmevSpQuICMXFxQCAkpISzJs3z2pcUVERQkNDQUQ4cuSIu9NlFrikYAYGBiI2NtYVi/bK9TqTO/tARGhra0NbW5tb1nenvrk7F0+5l/p5PxxP3kqpVCI0NBRr167F5s2bPZ0Ok4i/VvIACwoKwvnz5z2dBgDvysWVHpR+sjvz9/fHpk2b8Pvf/x5ZWVmIiYlB3759PZ0Ws4EvyTLGmAckJydj6dKlMBqNyMjIsHg/k3kXpxbM1atXQyaToaGhAYcOHRJuWPv6ij/I6vV6ZGdno2fPnvDz80PXrl2RlpaGkpISISY2NlZ003vq1KkAgNGjR4vaa2trJa/XmtraWrOb7MuXLwcAtLS0iNrT09Pt6odJTU0N5s+fjz59+kCpVKJ79+4YPXo0PvvsMzQ2NkruQ73PuQEAACAASURBVPvl+Pn5ISQkBOPGjcOBAweEmLy8PFHOZ86cwaRJkxAaGiq0rV+/XhTT/mANDg422x6ml1wux5UrV4Rtk5ubizFjxiA8PBwqlQrR0dF45513RJccbfWtY74dTxyO9PnXX39FZmYmgoODERoaipSUFI9/srPWT3tzN21PmUyG7t27o7i4GImJiQgKCkJAQAASEhJw6NAhIX758uVCfPtLrHv37hXau3TpYrZ8R48nJt2rr76KpKQkHD16FHPnzpU0jyuPB3vOaQ8ksgEA5ebm2goTUavV9NRTT1mcVl5eTg899BCFhYXRrl27yGg00vHjxyk+Pp78/f2psLBQiC0pKSG1Wk06nY7q6+uJiKipqYmGDh1Kmzdvtmu9UowdO5bkcjmdO3fObNrw4cPp888/d6gfFRUV1KtXLwoPD6f8/Hyqq6ujyspKysnJIQD09ttvS+qDaTlhYWGUn59PBoOBzpw5Q2lpaSSTyejjjz8WxaemphIAio+PpwMHDlBDQwMdPnyYfHx8SK/Xi2IaGxuF+TQaDRmNRtGyXnvtNQJAr7/+utCWn58vtF2/fp30ej29++67JJfLacGCBWb523p/LOXiaJ9TU1OpsLCQ6uvrad++faRSqWjIkCFW130n6enplJ6e7tC8lljqZ/t2qbnrdDpSq9U0fPhwIb64uJgGDBhAfn5+VFBQIIq3tv1jYmIoNDTUrN3W+5WQkECdO3emoqIiqV23yZHzzb2muLiYNBqN8H+9Xk9arZYA0MaNG4X2oqIis/fFlceDPee0+01ubi5JKIfk9oI5bdo0AkCbNm0StVdUVJBSqaSYmBhR+5YtWwgApaWlUVtbG02bNo1eeeUVu9crxbfffksAaPbs2aL2gwcPUo8ePai5udmhfkyfPt3qdhw7dqzkgmlaTsc/FpqamigyMpJUKhVVVlYK7aaDZffu3Vb7LKVg5ubmkkwmo+nTp4vmzc/Pp5EjR5otc+rUqaRQKMhgMIjaHSmYjvY5Pz9fFJ+enk4AhD8U7OHugik1d51ORwDo559/FrUfPXqUAJBOpxO1O7tgxsfHU0hIiFNPpA9iwSS6XRwVCgWp1Wo6deqU0NbxfXHl8WDvufl+IrVguv0eZl5eHuRyudmw+vDwcPTv3x8//vijcMkPuP3g6yVLluDLL79EbGwsampqkJOT45LcEhMTMWjQIHz22WeoqakR2t98803MmzdPdEnKnn7s2LEDADBu3Dizde7Zs8fi0HJLTMsZP368qF2pVCIxMRGNjY34+uuvzeZ74oknJC3fpLa2FoGBgQCAH374AdOmTcOIESOwdu1aUVxKSoroMpCJTqdDc3MzTpw4Ydd6LXG0z0OGDBH9X6vVArj9G5Pezp7c1Wo1Bg4cKGqLjo5GZGQkSktLUVFR4bI8CwoKcP36df5lEScYNmwYVq9ejYaGBmRkZKCxsdFinCuPB3vPzQ8itxbMmzdvwmAwoK2tDRqNxuz+2E8//QQAOHv2rGi+nJwcDB06FIWFhcjIyIBc7rq0X3rpJdy4cQMffPABAKCsrAzff/89ZsyY4VA/TLH+/v539VBtW8sJCwsDAFRWVppNU6vVDq3z0qVLSE1NhVarxZdffgk/Pz/RdIPBgGXLliE6OhohISFC/19++WUAwI0bNxxar8nd9Fmj0Yj+b8r9Xvg6hz25BwcHW1yG6Yenr1275uTsmKtkZ2cjMzMTx48fx5w5c8ymu/J4cPTc/KBxSeWx9qPTSqUSwcHB8PX1RXNzM+j2JWGzV0JCgmi+goICGAwGREdHY/bs2SgtLbVrvfbIzMyEVqvF+++/j5s3b+Ktt97CzJkzRTuoPf1QKpXQaDRoamoSfrbpTu607e60nKqqKgC3/xp0BqPRiJSUFDQ3N2Pnzp3o3LmzWcyECROQk5ODmTNnoqysDG1tbSAi4fcjqcNP5dj7/ri7z/eimpoaiz9JZCqUpsIJAHK5HLdu3TKLra2ttbhs/vF491u/fj369euHTz75BBs2bBBNc+Xx4Oi5+UHjkoIZEBAgOjD79euHdevWAQDS0tLQ0tIiGsVnsnLlSvTo0QMtLS1C2y+//IIXXngB27dvx1dffQWVSoXU1FTo9Xq71iuVr68vXnzxRVy7dg1vvfUWvvjiC2RnZ5vF2dOPiRMnAgB2795tFjto0CDRDxPfqQ+m5ezatUu0jJs3b2L//v1QqVRITk62q7+WtLa2YvLkyTh9+jS2b98u+n5Yeno68vLy0NraikOHDiE8PBzZ2dno2rWrcIK1djnJkffHXX2+VzU1NQlPjjE5duwYysvLodPpEBERIbRHRETg6tWrotjKykpcunTJ4rKdcTwx+wQGBmL79u1Qq9XCVa72XHk82HtufiDZuskJB27Cjx07ljQaDV26dIkKCwvJ19eXTp48SUREVVVV1KdPH+rduzft3r2bamtrqaamhj766CMKCAgQrctoNNKAAQPo3//+t9BWUFBACoWCRowYQbdu3ZK8XnvU1dWRRqMhmUxGzz//vMUYe/phGtkWERFBO3fupLq6Orp8+TLNmjWLwsLC6OLFi5L60HGEXF1dnWiE3Lp160Q5WhtcYitm7ty5BIA+/fRTs/hnnnmGduzYQUREo0aNIgC0atUq0uv1dOPGDfruu++oR48eBID27dsnmtfW+yNllKyjfV64cKHFATJSuHvQj9TcdTodaTQaSkxMlDRKds6cOQSA3nvvPTIajXTu3DmaNGkSRUVFWRz0Y+v94lGyjrE06KejjRs3EgCbo2SdeTzYc06733h0lOzp06cpLi6O1Go1abVaWrNmjWh6TU0NzZ8/n3r37k0KhYK6du1KSUlJohPsn//8ZwIgvI4dO0Z6vV7UBoBycnIkr9ceL7/8MgGg0tJSqzFS+mFSXV1N8+bNo169epFCoaCIiAiaPHkylZWVieJs9aHjcjQaDSUnJ9P+/fuFmKKiIrPt1HFn2LFjh9n0KVOm0JEjRyzO2/5lKph6vZ6ysrJIq9WSQqGgsLAwmj59Oi1atEiIbT+yzlrfrOVyt31esmQJEZFZ+/jx462+p5Y4q2Ba66ejuet0OoqKiqKTJ09ScnIyBQUFkUqlovj4eDp48KDZ+mtra2nGjBkUERFBKpWKYmNjqbi4mGJiYoTlL1y4UIi3tS/GxcXxKFk7WDp/3Wnk6axZsyz+IePK48Gec9r9RGrBlBFZuAHSjkwmQ25uLiZNmnSnMMbuWxkZGQCArVu3ejgTsYEDB6K6uvq+GrnI5xvmCVu2bEFmZqbF8QDt8aPxGGOMMQm4YDLGGGMSPBAF09pzUdu//va3v3k6TcYkMT3rtbS0FFevXoVMJsPSpUs9nRZj970H4mnKtq5LM3YvWbBgARYsWODpNBh74DwQnzAZY4yxu8UFkzHGGJOACyZjjDEmARdMxhhjTAJJg36KiopcnQdjXsv0YIAtW7Z4OJMHA59vmLtJ3eckPemHMcYYu9/Z+kaFpE+Y/Kgq9iDz1kfj3Y/40XjME0yPxrOF72EyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4ALJmOMMSaBywrmwIEDJf1KiOm1fPlyV6ViUUlJiVkODz/8sFlcbW2tWRxjzPtcvHgRTz/9NOrq6lBdXS06ZgcNGoSmpiazeTrGyWQyDB482APZu8bu3bvRt29f+Pra/kJESUkJxo8fj+DgYAQFBWH06NE4dOiQ18cvWrQIubm5NvvnDC79hLl161YQkfDKysoCAOzZs0fULmU4r7MNHDgQRIQXXngBALBkyRKcO3fOLC44OBhEhKeffhorV668L375pL6+Ho888ghSUlI8nYpX5cLuXSUlJRg8eDCSkpLQqVMndOnSBUSE4uJiYfq8efPM5jPFFRUVITQ0FESEI0eOuDt9pzt//jyefvppLF68GFVVVTbjf/jhBzz55JMICgrCqVOn8Msvv6B3794YOXIkvvnmG6+OnzlzJhYvXoy//vWvdmwhB5ENACg3N9dWmBmdTkdbt24VtWVlZREA2rNnj6g9MzOTcnJy7F6HVGq1mp566imL0w4ePEgASKvVUmtrq8WYqqoq8vf3p/Lyco/k6Gx1dXXUu3dvGjdunFvWd6e+uTsXR6Snp1N6erqn0xBx5/7izvU7cr4xGAzUvXt3ysrKMptWXFxMSqWSQkNDCQB9/vnnFpdRVFREoaGhDuXsjZ599ll64403qLm5maKiosjHx8dqbGtrK/Xv358iIiLoxo0bQntLSwv169ePtFotNTU1eW08EVFJSQnJZDKHahURUW5uLkkoh+SyT5glJSVIT0+XFPvFF1947Adwn3rqKTzyyCO4fPkyvv32W4sx//rXvzB69GhERES4OTvXCAoKwvnz57F7925Pp+JVubB706pVq1BZWYlly5ZZnO7v749NmzZBLpcjKysLZWVlbs7Q/f75z39i0aJFki7Ffv/99zhx4gTS09OhUqmEdh8fHzz77LO4fPkydu7c6bXxAKDT6ZCeno6XXnoJLS0tEreS/XjQD4Dp06cDAD799FOL0z/99FP893//txszYoxJQURYv349hg4disjISKtxycnJWLp0KYxGIzIyMizez7yftC80tnz33XcAYPHeralt//79XhtvMnHiRFy5cgW7du0ym+YsXlUw9Xo9srOz0bNnT/j5+aFr165IS0tDSUmJEBMbGyu6QT916lQAwOjRo0XttbW1WL16NWQyGRoaGnDo0CFhWse/up5//nnI5XLk5eWhtrZWNO2HH37AtWvXMGHCBLvyNKmpqcH8+fPRp08fKJVKdO/eHaNHj8Znn32GxsZGyTm2X46fnx9CQkIwbtw4HDhwQIjJy8sTbYMzZ85g0qRJCA0NFdrWr18viml/4ggODrY6KEsulwsPIW9paUFubi7GjBmD8PBwqFQqREdH45133kFbW5uwPFt965hvx5OYI33+9ddfkZmZieDgYISGhiIlJQXnz5+3tLu5nJT8ly9fLuQeGxsrtO/du1do79Kli9Bua5uapstkMnTv3h3FxcVITExEUFAQAgICkJCQIBo44ez1u1tpaSmqqqqg0+lsxr766qtISkrC0aNHMXfuXEnLd+U+aM95xJVOnz4NAOjevbvZtKioKAAQfSr3tniTgQMHAgC+/vprs2lOY+uaLRy8h2mJtXuYRETl5eX00EMPUVhYGO3atYuMRiMdP36c4uPjyd/fnwoLC4XYkpISUqvVpNPpqL6+noiImpqaaOjQobR582azZUu535KUlEQA6IMPPjDLed68eQ7lWVFRQb169aLw8HDKz8+nuro6qqyspJycHAJAb7/9tqQcTcsJCwuj/Px8MhgMdObMGUpLSyOZTEYff/yxKD41NZUAUHx8PB04cIAaGhro8OHD5OPjQ3q9XhTT2NgozKfRaMhoNIqW9dprrxEAev3114W2/Px8oe369euk1+vp3XffJblcTgsWLDDL39b2t5SLo31OTU2lwsJCqq+vp3379pFKpaIhQ4ZYXbcUjtzDtDd/a9soJibG4r01W9tUp9ORWq2m4cOHC9ujuLiYBgwYQH5+flRQUODS9SckJFDnzp2pqKjIaowl9p5vNmzYYLZ/tldcXEwajUb4v16vJ61WSwBo48aNQrule5iu3AftOY/cLVv3MMeMGUMA6PDhw2bTzp49SwDod7/7ndfGmxgMBgJAcXFxVvtqjdR7mF5TMKdNm0YAaNOmTaL2iooKUiqVFBMTI2rfsmULAaC0tDRqa2ujadOm0SuvvGJxvVIK5ubNmwmAaMe+ceMGaTQaOnr0qEN5Tp8+3er2Gzt2rOSCaVpOxz8GmpqaKDIyklQqFVVWVgrtpgN39+7dVvsrpWDm5uaSTCaj6dOni+bNz8+nkSNHmi1z6tSppFAoyGAwiNodKZiO9jk/P18Un56eTgCEPxQc4UjBtDd/VxRMAPTzzz+L2o8ePUoASKfTSVqeo+uPj4+nkJAQu0/89p5vVq1aRQBozZo1Fqd3LJhEt4ujQqEgtVpNp06dEto69tOV+6C957u7cTcFs6ysjACI8vG2+PZkMhk9/PDDVvtqjccH/dgrLy8Pcrnc7OsF4eHh6N+/P3788UfhkiBw+xcklixZgi+//BKxsbGoqalBTk6Ow+v/wx/+gODgYBQXF+PEiRMAgC+//BIPP/wwoqOjHcpzx44dAIBx48aZrW/Pnj0Wh7lbYlrO+PHjRe1KpRKJiYlobGy0eBniiSeekLR8k9raWgQGBgK4fSl62rRpGDFiBNauXSuKS0lJEV2SMtHpdGhubha2391wtM9DhgwR/V+r1QIAysvL7zoneziavzOp1WrhMpVJdHQ0IiMjUVpaioqKCpetu6CgANevX8fw4cNdtg4AwmV8hUIheZ5hw4Zh9erVaGhoQEZGBhobGy3GuXIftPd850rBwcEAgIaGBrNppjZTjDfGt+fr62v1/XQGryiYN2/ehMFgQFtbGzQajdn9s59++gkAcPbsWdF8OTk5GDp0KAoLC5GRkQG53PHu+Pv7Y/LkyQCATz75RPj3T3/6k0N5mmL9/f0RFBTkcF62lhMWFgYAqKysNJumVqsdWuelS5eQmpoKrVaLL7/8En5+fqLpBoMBy5YtQ3R0NEJCQoT+v/zyywCAGzduOLRek7vps0ajEf3flHv7e6uudjf5O5O1k0q3bt0AANeuXXPp+t3B398fANDc3GzXfNnZ2cjMzMTx48cxZ84cs+mu3AcdPd+5yqOPPgoAFgv01atXAQB9+/b12vj2Wlpa7BrwZC+vKJhKpRLBwcHw9fVFc3Oz6KEG7V8JCQmi+QoKCmAwGBAdHY3Zs2ejtLTU4vKlPp3HNBJ248aNOHfuHIqKivDss886lKdSqYRGo0FTUxOMRqPNdVvL0dZyTF9KDg8Pl9RHW4xGI1JSUtDc3IydO3eic+fOZjETJkxATk4OZs6cibKyMrS1tYGI8PbbbwMw/xFWe5+O5O4+O5sj+cvlcty6dcsstuMgNBMp27SmpsbigzZMhdJUOF21fncwfdXLYDDYPe/69evRr18/fPLJJ9iwYYNomiv3QUfPd65iWs+PP/5oNs3UlpiY6LXxJnV1dSAil379zysKJgCkpaWhpaXF4qOPVq5ciR49eoi+X/PLL7/ghRdewPbt2/HVV19BpVIhNTUVer3ebP6AgADRyaBfv35Yt26dWdwTTzyBxx57DNeuXcOUKVOQmpqKkJAQh/OcOHEiAFj8juGgQYPwl7/8RVKOpuV0HC598+ZN7N+/HyqVCsnJyWbrsFdraysmT56M06dPY/v27aK/4tLT05GXl4fW1lYcOnQI4eHhyM7ORteuXYWTp7VLIVK3f3vu6rOr2Jt/RESE8NezSWVlJS5dumRx+VK2aVNTk/CkG5Njx46hvLwcOp1OdGJxxfrd4fHHHwdg+dOILYGBgdi+fTvUajU++OADs+mu3AftPd+5Unx8PB577DFs27ZNNFK9tbUVX3zxBbRareiytLfFm5j2X9M+4RK2bnLCTYN+qqqqqE+fPtS7d2/avXs31dbWUk1NDX300UcUEBAgysFoNNKAAQPo3//+t9BWUFBACoWCRowYQbdu3RIte+zYsaTRaOjSpUtUWFhIvr6+dPLkSYs5mgYRAKCvv/76rvI0jbKLiIignTt3Ul1dHV2+fJlmzZpFYWFhdPHiRUk5dhytV1dXJxqtt27dOlGOlgbRdGQpZu7cuQSAPv30U7P4Z555hnbs2EFERKNGjSIAtGrVKtLr9XTjxg367rvvqEePHgSA9u3bZ9f2lzJK1tE+L1y40OLgF3s4Y5SsrfznzJlDAOi9994jo9FI586do0mTJlFUVJTFQTe2tqlOpyONRkOJiYmSRsk6e/3uGiXb1tZG3bp1szoAydKgn442btxIAGyOknXmPmjPeYSIaMqUKQSALly4YHObdGRr0A/R7UFP/v7+NHnyZKqoqKDq6mrKysoiX19f2rt3r9fHExF9/vnnBEA4T9nDq0bJfvrpp0IRav/q+BWGmpoamj9/PvXu3ZsUCgV17dqVkpKSRCfgP//5z6JlHDt2jPR6vdmy2z9q7/Tp0xQXF0dqtZq0Wq3VEXVEtw8SX1/fOz4qT0qeJtXV1TRv3jzq1asXKRQKioiIoMmTJ1NZWZkozlaOHZej0WgoOTmZ9u/fL8QUFRVZ3M7t7dixw2z6lClT6MiRIxbnbf8y7Yh6vZ6ysrJIq9WSQqGgsLAwmj59Oi1atEiIbT+KzVrfrOVyt31esmQJEZFZ+/jx462+73fi6KPxpORvUltbSzNmzKCIiAhSqVQUGxtLxcXFFBMTI+S/cOFCId7W/qLT6SgqKopOnjxJycnJFBQURCqViuLj4+ngwYMuX39cXJxbRskSEb3yyivk6+tLV69eFdosnRPuNPJ01qxZFv8wcOU+aM95ZNSoURQYGEgtLS2Stonpq1+WXh2/DmPy008/0bhx46hTp04UGBhIo0aNsriveGt8RkYGRUVFmX1gksKrCiZj9zJvfJasLaaCea9x5HxTW1tLUVFRFp8lez/47bffSKVS0YwZMzyditcyPUvW0vfwpbjnvlbCGGOO0Gg0yM/Px7Zt27BmzRpPp+NURITs7Gx06tTprr42dz+7cOEC0tLSsHjxYuGbDq7CBZMxds8bNGgQjhw5gj179qCurs7T6ThNVVUVLly4gP3793vtqHBPW7t2LVasWIEVK1a4fF1cMBm7j5ie9VpaWoqrV69CJpN57JeA3K1nz57YuXMnOnXq5OlUnCY8PBwHDx5E//79PZ2K11q5cqXLP1maeOaJyYwxl1iwYAEWLFjg6TQYuy/xJ0zGGGNMAi6YjDHGmARcMBljjDEJuGAyxhhjEsiILDyduX2ATIZhw4ZZ/PVrxh4Ehw8fBnD7Z6GYa23bto3PN8ztrly5gsOHD1v8sYL2bBbMjIwMpybGGLuzY8eOAYDod1gZY663devWO063WTAZY+41adIkAMCWLVs8nAljrD2+h8kYY4xJwAWTMcYYk4ALJmOMMSYBF0zGGGNMAi6YjDHGmARcMBljjDEJuGAyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4ALJmOMMSYBF0zGGGNMAi6YjDHGmARcMBljjDEJuGAyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4ALJmOMMSYBF0zGGGNMAi6YjDHGmARcMBljjDEJuGAyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4ALJmOMMSYBF0zGGGNMAi6YjDHGmARcMBljjDEJuGAyxhhjEnDBZIwxxiTggskYY4xJICMi8nQSjD2o/vWvf+Hvf/87Wltbhbbq6moAQJcuXYQ2Hx8fzJ8/H88//7zbc2SM3cYFkzEPKisrQ79+/STFnjlzBn379nVxRowxa/iSLGMe1LdvX+h0OshkMqsxMpkMOp2OiyVjHsYFkzEPe/755+Hj42N1uq+vL6ZNm+bGjBhjlvAlWcY8rLy8HFqtFm1tbRany2QyXL58GVFRUW7OjDHWHn/CZMzDIiMj8eSTT0IuNz8c5XI5nnrqKS6WjHkBLpiMeYHnnnvOYrtMJuORsYx5Cb4ky5gX+O233xAWFobm5mZRu6+vLyorKxEaGuqhzBhjJvwJkzEvEBISgjFjxogG//j4+CA5OZmLJWNeggsmY15i6tSpooE/RISpU6d6MCPGWHt8SZYxL3Hjxg2EhoaiqakJAODv74/q6mqo1WoPZ8YYA/gTJmNeIyAgABMnToRCoYBCocDEiRO5WDLmRbhgMuZF/vjHP6K5uRnNzc344x//6Ol0GGPt+Ho6AU/bsmWLp1NgTNDa2oqAgAAQEerq6nj/ZF5l0qRJnk7Box74e5h3eoYnY4yx//OAlwv+hAkAubm5D/xfTncjIyMDALB161YPZ3J/+M9//gOZTIYRI0aYTZPJZLy/MrfbsmULMjMzPZ2Gx3HBZMzLxMXFeToFxpgFXDAZ8zKWninLGPM8PjIZY4wxCbhgMsYYYxJwwWSMMcYk4ILpRF988QVkMhlkMhn8/f09nQ5jIhcvXsTTTz+Nuro6VFdXC/uqTCbDoEGDhEfytdcxTiaTYfDgwR7I3jV2796Nvn37wtfX9nCOkpISjB8/HsHBwQgKCsLo0aNx6NAhr49ftGgRcnNzbfaP2cYF04kmT54MIkJiYqKnU7ln1dfX45FHHkFKSoqnU7mvlJSUYPDgwUhKSkKnTp3QpUsXEBGKi4uF6fPmzTObzxRXVFSE0NBQEBGOHDni7vSd7vz583j66aexePFiVFVV2Yz/4Ycf8OSTTyIoKAinTp3CL7/8gt69e2PkyJH45ptvvDp+5syZWLx4Mf7617/asYWYRfSAA0C5ublOXWZiYiIplUqnLtObpaenU3p6ulOWVVdXR71796Zx48Y5ZXmupFar6amnnnLrOh3ZXw0GA3Xv3p2ysrLMphUXF5NSqaTQ0FACQJ9//rnFZRQVFVFoaKhDOXujZ599lt544w1qbm6mqKgo8vHxsRrb2tpK/fv3p4iICLpx44bQ3tLSQv369SOtVktNTU1eG09EVFJSQjKZzOFzXW5uLnG5IOJPmMyrBAUF4fz589i9e7enU7lvrFq1CpWVlVi2bJnF6f7+/ti0aRPkcjmysrJQVlbm5gzd75///CcWLVok6VLs999/jxMnTiA9PR0qlUpo9/HxwbPPPovLly9j586dXhsPADqdDunp6XjppZfQ0tIicSuxjrhgMnYfIyKsX78eQ4cORWRkpNW45ORkLF26FEajERkZGRbvZ95P2hcaW7777jsAsHjv1tS2f/9+r403mThxIq5cuYJdu3aZTWPScMG8C6dPn8Yf/vAHaDQaqNVqxMXF4eDBg1bj9Xo9srOz0bNnT/j5+aFr165IS0tDSUmJEJOXlycaYPHrr78iZzKdDgAAFlFJREFUMzMTwcHBCA0NRUpKCs6fPy9a7s2bN7Fs2TI8+uijCAgIQOfOnTFhwgR89dVXaG1ttTsHT+nYd9NJ295tsnr1aiG2e/fuKC4uRmJiIoKCghAQEICEhATR4Ijly5cL8bGxsUL73r17hfYuXbqYLb+hoQGHDh0SYqR8WnG30tJSVFVVQafT2Yx99dVXkZSUhKNHj2Lu3LmSll9TU4P58+ejT58+8PPzQ0hICMaNG4cDBw4IMY7s04D37KunT58GAHTv3t1sWlRUFACIPpV7W7zJwIEDAQBff/212TQmkaevCXsaHLyHefbsWQoODqaoqCj65ptvyGg00tGjRykpKYl69uxpdg+zvLycHnroIQoLC6Ndu3aR0Wik48ePU3x8PPn7+1NhYaEoPjU1lQBQamoqFRYWUn19Pe3bt49UKhUNGTJEFDtjxgzSaDT0zTff0I0bN6iyspIWLFhAAOjAgQMO5yCVM+9hEv1f3xsbGy22S9kmREQ6nY7UajUNHz5ciC8uLqYBAwaQn58fFRQUiOKt3ZOMiYmxeP/O1j3MhIQE6ty5MxUVFUntuk327q8bNmwgAPT6669bnF5cXEwajUb4v16vJ61WSwBo48aNQrule5gVFRXUq1cvCgsLo/z8fDIYDHTmzBlKS0sjmUxGH3/8sSjenvfPVfuqJbbuYY4ZM4YA0OHDh82mnT17lgDQ7373O6+NNzEYDASA4uLirPbVGr6HedsDvwUcLZgZGRkEgLZt2yZqv3r1KimVSrOCOW3aNAJAmzZtErVXVFSQUqmkmJgYUbvp5JKfny9qT09PJwCk1+uFtl69etGTTz5plmPfvn1FBdPeHKRyd8GUsk2IbhdMAPTzzz+L2o8ePUoASKfTidqdXTDj4+MpJCTEqSd3e/fXVatWEQBas2aNxekdCybR7eKoUChIrVbTqVOnhLaO22D69OkEgDZv3ixqb2pqosjISFKpVFRZWSm02/P+uWpfteRuCmZZWRkBEOXjbfHtyWQyevjhh6321RoumLfxJVkH7d27F8Dtez/tRUZGom/fvmbxeXl5kMvlZl+XCA8PR//+/fHjjz/iypUrZvMNGTJE9H+tVgsAKC8vF9rGjh2LwsJC/M///A8OHz4sXIY9c+YMRo4cedc5eBsp28RErVYLl6JMoqOjERkZidLSUlRUVLgsz4KCAly/fh3Dhw932TpsMV3WVigUkucZNmwYVq9ejYaGBmRkZKCxsdFi3I4dOwAA48ePF7UrlUokJiaisbHR4uU/Ke+fN+2rwcHBAICGhgazaaY2U4w3xrfn6+tr9f1ktnHBdMDNmzdhNBrh7++PwMBAs+ndunUzizcYDGhra4NGozH7IvhPP/0EADh79qzZsjQajej/fn5+AIC2tjahbc2aNfjXv/6FCxcuIDExEZ06dcLYsWOFE9rd5uBtpGwTE2snDtN7dO3aNSdn511MD9Bobm62a77s7GxkZmbi+PHjmDNnjtl00/7k7++PoKAgs+lhYWEAgMrKSrNptt4/b9tXH330UQCwWKCvXr0KAKI/kr0tvr2Wlha7BjwxMS6YDlAqlQgKCkJTUxPq6+vNpl+/ft0sPjg4GL6+vmhubgbdvhRu9kpISHAoH5lMhueeew7ffvstamtrkZeXByJCWloa/v73v7slB29VU1Nj8UdvTYWy/R83crkct27dMoutra21uOx74cfHIyIiAAAGg8HuedevX49+/frhk08+wYYNG0TTlEolNBoNmpqaYDQazeY1PQwgPDzc7vV6275qWs+PP/5oNs3U1v5hJd4Wb1JXVwciEvYJZj8umA4aN24cgP+7NGtSXV2NM2fOmMWnpaWhpaXF4qOrVq5ciR49ejj8/ajg4GBh5JxCocCYMWOEkYnth5C7Mgdv1dTUJDzNxuTYsWMoLy+HTqcTnTwiIiKEv9BNKisrcenSJYvLDggIEBXYfv36Yd26dU7M/u49/vjjACx/GrElMDAQ27dvh1qtxgcffGA2feLEiQBg9jWFmzdvYv/+/VCpVGa3LKTypn01Pj4ejz32GLZt2yb6uk1rayu++OILaLVa0WVpb4s3Me3bpn2COcCtd0y9EBwc9HPu3Dnq3LmzaJTsiRMnKDk5mbp162Y26Keqqor69OlDvXv3pt27d1NtbS3V1NTQRx99RAEBAWY5WBv4snDhQrOBLBqNhuLj46m0tJSampqoqqqK/va3vxEAWr58ucM5SOXuQT9StgnR7UE/Go2GEhMTJY2SnTNnDgGg9957j4xGI507d44mTZpEUVFRFgf9jB07ljQaDV26dIkKCwvJ19eXTp48KUz3hlGybW1t1K1bN6uDkywN+ulo48aNBMDmKNm6ujrRKNl169aJ4u15/+zdV6dMmUIA6MKFCza3SUe2Bv0Q3R705O/vT5MnT6aKigqqrq6mrKws8vX1pb1793p9PBHR559/TgBox44dErfM/+FBP7c98FvA0YJJRHTmzBn6wx/+QJ06dRKGxu/cuZMSExMJAAGgF154QYivqamh+fPnU+/evf9fe/ceFFX5xgH8e4gFloVdBBGR+CXqZA7ZZugIJYPAxOp4YSQIK5vKwUgtYpQyFG1GJINhmnEmmkEdptEcw2wgV8fKSP9AlwmUS2ZISWVcxQt3ucXz+4PZM6671NmFw3J5PjP7B+95znkfDu/Zh3P2PWdJoVCQt7c3RUVF0blz58QYg8Egrmt87dq1S8z1wdeqVauIaOixV4mJibRgwQJydXUlT09PCg4OpkOHDtHg4KBJzlJysNZoFcyCggKz3/GVV16xaZ8QDRVMPz8/unbtGul0OnJ3dyelUklhYWFUXFxs1n9rayslJCSQr68vKZVKWrZsGZWWllJQUJC4/R07dojx1dXVFBoaSiqVivz9/c1mooaGhtp9liwR0c6dO8nR0ZHq6+vFtpaWFrN9928zTzdv3mzxn4bbt29TcnIyBQQEkEKhII1GQzqdjoqKisQYW/9+1ozViIgIcnNzo4GBAUn7RK/Xm/VtfD18O4zRlStXaOXKlaRWq8nNzY0iIiIsjqPxGh8XF0d+fn7U19c3bMxwuGAOmfJ7YCQFkw0Z7TPM0WIsmJOJLeO1tbWV/Pz8LD5LdjK4d+8eKZVKSkhIsHcq45bxWbIP3wIkFRfMIfwZJmOTnEajgV6vx8mTJ5GTk2PvdEYVESEpKQlqtRrp6en2Tmdcqq2tRUxMDFJTU7F+/Xp7pzOhccFkbApYtGgRysrKcPbsWbS3t9s7nVHT3NyM2tpaFBUV2TQjdyrIzc1FRkYGMjIy7J3KhMcFk006xme9VlZWor6+HoIgIC0tzd5p2d3s2bNx+vRpqNVqe6cyambOnIni4mIEBgbaO5VxKzMzk88sR8n4e1o0YyOUkpKClJQUe6fBGJtk+AyTMcYYk4ALJmOMMSYBF0zGGGNMAi6YjDHGmAQCkYUnU08hgiAgODjY4reXM2lKSkoADH0tFJPXyZMnebyyMVdXV4eSkhKLX2QwlfAZJmOMMSYBn2EKAvLz8/Hiiy/aO5UJKy4uDgDw1Vdf2TmTyY/HK7OHEydOID4+ns8w7Z0AY4wxNhFwwWSMMcYk4ILJGGOMScAFkzHGGJOAC6aV3NzcIAiCycvBwQHTpk2DVqvFli1bcPnyZXunydiY++uvv7B27Vq0t7fj9u3bJsfIokWL0NPTY7bOw3GCIGDx4sV2yF5ea9euhSAI2Ldvn9myDz74APn5+XbIilmLC6aVOjs7UV5eDgCIjo4GEaG/vx/V1dXYu3cvqqursXjxYrzxxhvo7u62c7aMjY2KigosXrwYUVFRUKvVmD59OogIpaWl4vLk5GSz9YxxBoMBXl5eICKUlZWNdfqyOnLkCPR6/bDLN23ahNTUVOzevXsMs2K24II5Ch555BH4+PggOjoaP/74I95//318/vnneOmll6b8NGx7cXNzw7Jly6Zs/2Opvb0da9aswQsvvIC3337bbLmzszO8vLyQm5uL48eP2yFD+2loaEBycjJeffXVYWPmzp2LgoICZGRk4MSJE2OYHbMWF0wZfPzxx1i6dClOnTqFL7/80t7pMCarrKwsNDU1Yc+ePRaXu7i44NixY3BwcEBiYiJqamrGOEP72bRpE+Li4hAVFfWvcVqtFrGxsdi+fTsGBgbGKDtmLS6YMhAEQfxP+7PPPrNzNozJh4hw+PBhLF26FLNmzRo2TqfTIS0tDR0dHYiLi7P4eeZkk5eXh19++QXZ2dmS4tetW4e6ujqcOXNG5syYrbhgysR4Oa6kpAT9/f1ie0tLC5KSkjB79mw4OTnB29sbMTExqKioEGMKCwtNJkH8+eefiI+Ph4eHB7y8vLB69WrcuHHDpL/e3l7s2bMHTzzxBFxdXeHp6Yk1a9bg1KlT+Oeff0xipeQwFu7cuYNt27Zh7ty5cHJywrRp07By5UqcP39ejNm3b5+4Hx68xPntt9+K7dOnTxfbs7OzIQgCurq6cPHiRTHG0dHRZLkgCHj00UdRWlqKyMhIuLu7w9XVFeHh4bh48aJs/U82lZWVaG5uhlar/c/YDz/8EFFRUaiqqsI777wjaftSxogtxwsg73FQV1eH7du3Iy8vD+7u7pLWefrppwEA33333Yj7ZzKhKQ4A5efnW7VOeXk5AaDo6OhhY+7fv08ACAA1NDQQEVFDQwM99thj5OPjQ2fOnKGOjg66evUqhYWFkYuLC126dMlkG9HR0WI/ly5dos7OTjp37hwplUpasmSJSWxCQgJpNBr6/vvvqbu7m5qamiglJYUA0Pnz58U4a3OQIjY2lmJjY61ap7GxkQICAsjHx4f0ej21tbXR9evXKSYmhgRBoEOHDpnEq1Qqeu6558y2ExQURF5eXmbtw8UbabVaUqlUFBISIu7b0tJSeuqpp8jJyYkuXLgga//h4eHk6elJBoNh2BhLbBmvcjp69CgBoI8++sji8tLSUtJoNOLPLS0t5O/vTwDoiy++ENsNBoPZfrR2jFhzvMhxHDxIp9PRli1bxJ+N+yk9PX3Yddra2ggAhYaGjqhvOeTn5xOXC6IpvwfkKpjd3d1mBfO1114jAHTs2DGT2MbGRnJ2dqagoCCTduMbgF6vN2mPjY0lANTS0iK2BQQE0LPPPmuWx+OPP25SMK3NQQpbCubrr79OAOj48eMm7T09PTRr1ixSKpXU1NQktstRMAFQeXm5SXtVVRUBIK1WK2l7tvYfFhZG06ZNs/qNebwVzKysLAJAOTk5Fpc/XDCJhoqjQqEglUpFv/76q9j28H60doxYc7zIcRwYHTx4kObMmUOdnZ1im5SCSUQkCALNmzfP5r7lwgVzCF+SlUljYyMAQKFQiJfsCgsL4eDggNWrV5vEzpw5E4GBgbh8+TLq6urMtrVkyRKTn/39/QEMzcAzWrFiBS5duoQ333wTJSUl4mXY69evY/ny5WKcrTmMtoKCAgDAqlWrTNqdnZ0RGRmJ+/fvy35pSqVSiZfBjBYuXIhZs2ahsrJS/BvK4cKFC7h79y5CQkJk62MsGD+LVCgUktcJDg5GdnY2urq6EBcXh/v371uMs3WMSDle5DoObt68iffeew95eXlQqVRWr+/o6Djs/mD2xwVTJsXFxQCAkJAQKBQK9Pb2oq2tDYODg9BoNGY3a1+5cgUA8Ntvv5ltS6PRmPzs5OQEABgcHBTbcnJycOTIEdTW1iIyMhJqtRorVqwQ33QAjCiH0WTMw8XFxeLnOz4+PgCApqYmWfPw8PCw2D5jxgwAwK1bt2TtfzJwcXEBAJPP6aVISkpCfHw8rl69avFWlJGMkf86XuQ8DvR6Pdra2rB8+XKTbRpvK9m9e7fY9vvvv5utPzAwAKVSaXW/bGxwwZTB4OAgcnJyAABbt24FMPRfsYeHBxwdHdHf3w8auhxu9goPD7epT+NB+cMPP6C1tRWFhYUgIsTExOCTTz4ZkxykcnZ2hkajQU9PDzo6OsyWNzc3Axj6b9/IwcEBfX19ZrGtra0W+xAE4T/zuHPnjsX7ZI2F0lg45ep/MvD19QUAtLW1Wb3u4cOHMX/+fOTl5eHo0aMmy2wZI1LJeRxs3brV4raMv196errYNm/ePJN129vbQUTiPmXjDxdMGaSmpuKnn37CunXrxO+KBICYmBgMDAyYzMI0yszMxP/+9z+b78Hy8PBAdXU1gKHLY88//7w4e/DBaepy5mCNdevWAYDZFPre3l4UFRVBqVRCp9OJ7b6+vqivrzeJbWpqws2bNy1u39XV1aTAzZ8/HwcPHjSJ6enpEZ9EY/Tzzz+joaEBWq3W5I1Ljv4ngyeffBIAbLp86ebmhq+//hoqlcri7VfWjhFrjJfj4EHG8WXcp2z84YI5CgYHB3Hr1i188803iIyMRFZWFjZu3Ihjx46ZnGns378fc+fOxcaNG3H27Fm0tbXh7t27yM3Nxd69e5GdnT2i2w/eeustVFVVobe3F7du3UJWVhaICBEREWOWg1T79+9HQEAAkpOTcfr0aXR0dKCmpgYvv/wyGhsbceDAAfGyGwBERUWhoaEBn376KTo7O3Hjxg28++67JmeBD3rmmWdQU1ODv//+GwaDAbW1tQgNDTWJ0Wg02LlzJwwGA7q6ulBWVoYNGzbAyckJBw4cMIkd7f4jIiLg5eWFkpISW3fhuKDVajFjxgxUVlbatH5gYCByc3MtLrN2jFjD2uNgw4YNEAQBf/zxh039SWG8neW/HnLA7GhMphaNY7By1qFKpRJnvxpfgiCQRqOhhQsX0ubNm+ny5cvDrn/nzh3atm0bzZkzhxQKBXl7e1NUVBSdO3dOjDEYDGZ97Nq1S8z3wdeqVauIiKiiooISExNpwYIF5OrqSp6enhQcHEyHDh2iwcFBq3Owhi2zZImIbt++TcnJyRQQEEAKhYI0Gg3pdDoqKioyi21tbaWEhATy9fUlpVJJy5Yto9LSUgoKChL3xY4dO8T46upqCg0NJZVKRf7+/mazOLVaLfn5+dG1a9dIp9ORu7s7KZVKCgsLo+LiYtn7Dw0NnRSzZImIdu7cSY6OjlRfXy+2tbS0mI3Vf5t5unnzZouzjaWMEVuOFyLrjoOIiAhyc3OjgYEBq/ZNYmKiWQ4ASKfTmcXGxcWRn58f9fX1WdXHWOBZskOm/B4Yj29AE42tBdOejAVzohmP47W1tZX8/PwoMTHR3qnI4t69e6RUKikhIUG2PioqKkgQBLNbaMYLLphD+JIsY2xENBoN9Ho9Tp48KU52myyICElJSVCr1UhPT5elj9raWsTExCA1NRXr16+XpQ82OrhgMsZGbNGiRSgrK8PZs2fR3t5u73RGTXNzM2pra1FUVGTTjFwpcnNzkZGRgYyMDFm2z0YPF0w2pRif9VpZWYn6+noIgoC0tDR7pzUpzJ49G6dPn4ZarbZ3KqNm5syZKC4uRmBgoGx9ZGZm8pnlBDE5nwjN2DBSUlKQkpJi7zQYYxMQn2EyxhhjEnDBZIwxxiTggskYY4xJwAWTMcYYk4ALJmOMMSaBQGTh6xqmkKnyrRKMMTZSU7xc8G0l+fn59k6BMcbYBDDlzzAZY4wxKfgzTMYYY0wCLpiMMcaYBFwwGWOMMQkcAXxl7yQYY4yx8e7/TNR5Xeoli1YAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"binary_model = tf.keras.Sequential([\n",
" binary_vectorize_layer,\n",
" layers.Dense(4)])\n",
"\n",
"binary_model.compile(\n",
" loss=losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" optimizer='adam',\n",
" metrics=['accuracy'])\n",
"\n",
"tf.keras.utils.plot_model(binary_model, show_shapes=True)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:30.019087Z",
"iopub.status.busy": "2024-08-16T07:38:30.018510Z",
"iopub.status.idle": "2024-08-16T07:38:39.277341Z",
"shell.execute_reply": "2024-08-16T07:38:39.276652Z"
},
"id": "n12Cnhtc_bct"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1:25 - loss: 1.4060 - accuracy: 0.2500"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 0s - loss: 1.3622 - accuracy: 0.2909 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 27/200 [===>..........................] - ETA: 0s - loss: 1.3559 - accuracy: 0.3171"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 40/200 [=====>........................] - ETA: 0s - loss: 1.3298 - accuracy: 0.3828"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 0s - loss: 1.3071 - accuracy: 0.4460"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 69/200 [=========>....................] - ETA: 0s - loss: 1.2857 - accuracy: 0.4828"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 84/200 [===========>..................] - ETA: 0s - loss: 1.2655 - accuracy: 0.5167"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 98/200 [=============>................] - ETA: 0s - loss: 1.2444 - accuracy: 0.5446"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"113/200 [===============>..............] - ETA: 0s - loss: 1.2244 - accuracy: 0.5644"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"128/200 [==================>...........] - ETA: 0s - loss: 1.2051 - accuracy: 0.5854"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"144/200 [====================>.........] - ETA: 0s - loss: 1.1875 - accuracy: 0.5977"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"159/200 [======================>.......] - ETA: 0s - loss: 1.1674 - accuracy: 0.6124"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"173/200 [========================>.....] - ETA: 0s - loss: 1.1505 - accuracy: 0.6194"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"188/200 [===========================>..] - ETA: 0s - loss: 1.1342 - accuracy: 0.6283"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 5ms/step - loss: 1.1224 - accuracy: 0.6353 - val_loss: 0.9172 - val_accuracy: 0.7806\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 2/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.9027 - accuracy: 0.7812"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.8512 - accuracy: 0.8203"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 32/200 [===>..........................] - ETA: 0s - loss: 0.8569 - accuracy: 0.8164"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 47/200 [======>.......................] - ETA: 0s - loss: 0.8515 - accuracy: 0.8191"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 62/200 [========>.....................] - ETA: 0s - loss: 0.8402 - accuracy: 0.8185"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 77/200 [==========>...................] - ETA: 0s - loss: 0.8325 - accuracy: 0.8210"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 92/200 [============>.................] - ETA: 0s - loss: 0.8279 - accuracy: 0.8193"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/200 [===============>..............] - ETA: 0s - loss: 0.8226 - accuracy: 0.8178"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"122/200 [=================>............] - ETA: 0s - loss: 0.8164 - accuracy: 0.8184"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"137/200 [===================>..........] - ETA: 0s - loss: 0.8106 - accuracy: 0.8180"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"152/200 [=====================>........] - ETA: 0s - loss: 0.8030 - accuracy: 0.8185"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"166/200 [=======================>......] - ETA: 0s - loss: 0.7947 - accuracy: 0.8180"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.7874 - accuracy: 0.8175"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"194/200 [============================>.] - ETA: 0s - loss: 0.7822 - accuracy: 0.8175"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.7810 - accuracy: 0.8166 - val_loss: 0.7519 - val_accuracy: 0.8037\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 3/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.7448 - accuracy: 0.8438"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.6700 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 32/200 [===>..........................] - ETA: 0s - loss: 0.6734 - accuracy: 0.8486"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 47/200 [======>.......................] - ETA: 0s - loss: 0.6712 - accuracy: 0.8537"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 62/200 [========>.....................] - ETA: 0s - loss: 0.6617 - accuracy: 0.8574"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 78/200 [==========>...................] - ETA: 0s - loss: 0.6568 - accuracy: 0.8594"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 93/200 [============>.................] - ETA: 0s - loss: 0.6563 - accuracy: 0.8572"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.6514 - accuracy: 0.8547"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"123/200 [=================>............] - ETA: 0s - loss: 0.6497 - accuracy: 0.8542"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.6478 - accuracy: 0.8541"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"153/200 [=====================>........] - ETA: 0s - loss: 0.6427 - accuracy: 0.8560"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"167/200 [========================>.....] - ETA: 0s - loss: 0.6363 - accuracy: 0.8567"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.6318 - accuracy: 0.8574"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"195/200 [============================>.] - ETA: 0s - loss: 0.6300 - accuracy: 0.8569"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.6289 - accuracy: 0.8564 - val_loss: 0.6655 - val_accuracy: 0.8181\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 4/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.6377 - accuracy: 0.8438"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.5662 - accuracy: 0.8828"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 32/200 [===>..........................] - ETA: 0s - loss: 0.5678 - accuracy: 0.8828"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 47/200 [======>.......................] - ETA: 0s - loss: 0.5662 - accuracy: 0.8843"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 62/200 [========>.....................] - ETA: 0s - loss: 0.5571 - accuracy: 0.8876"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 78/200 [==========>...................] - ETA: 0s - loss: 0.5537 - accuracy: 0.8870"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 93/200 [============>.................] - ETA: 0s - loss: 0.5546 - accuracy: 0.8864"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.5505 - accuracy: 0.8845"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"123/200 [=================>............] - ETA: 0s - loss: 0.5501 - accuracy: 0.8847"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"138/200 [===================>..........] - ETA: 0s - loss: 0.5497 - accuracy: 0.8854"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"153/200 [=====================>........] - ETA: 0s - loss: 0.5454 - accuracy: 0.8868"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"168/200 [========================>.....] - ETA: 0s - loss: 0.5403 - accuracy: 0.8873"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"183/200 [==========================>...] - ETA: 0s - loss: 0.5368 - accuracy: 0.8878"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.5356 - accuracy: 0.8886"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.5351 - accuracy: 0.8878 - val_loss: 0.6117 - val_accuracy: 0.8288\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 5/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.5579 - accuracy: 0.8750"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.4958 - accuracy: 0.8984"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 0s - loss: 0.4960 - accuracy: 0.9012"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 46/200 [=====>........................] - ETA: 0s - loss: 0.4958 - accuracy: 0.9035"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 0s - loss: 0.4858 - accuracy: 0.9057"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 76/200 [==========>...................] - ETA: 0s - loss: 0.4818 - accuracy: 0.9042"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.4845 - accuracy: 0.9038"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/200 [==============>...............] - ETA: 0s - loss: 0.4833 - accuracy: 0.9006"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.4830 - accuracy: 0.8987"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"135/200 [===================>..........] - ETA: 0s - loss: 0.4805 - accuracy: 0.9005"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.4773 - accuracy: 0.9021"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"164/200 [=======================>......] - ETA: 0s - loss: 0.4733 - accuracy: 0.9028"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"178/200 [=========================>....] - ETA: 0s - loss: 0.4713 - accuracy: 0.9026"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.4687 - accuracy: 0.9036"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.4689 - accuracy: 0.9031 - val_loss: 0.5748 - val_accuracy: 0.8350\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 6/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.4950 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.4435 - accuracy: 0.9121"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 0s - loss: 0.4426 - accuracy: 0.9163"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 46/200 [=====>........................] - ETA: 0s - loss: 0.4418 - accuracy: 0.9178"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 0s - loss: 0.4323 - accuracy: 0.9196"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 77/200 [==========>...................] - ETA: 0s - loss: 0.4297 - accuracy: 0.9180"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 92/200 [============>.................] - ETA: 0s - loss: 0.4314 - accuracy: 0.9171"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"107/200 [===============>..............] - ETA: 0s - loss: 0.4298 - accuracy: 0.9150"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"122/200 [=================>............] - ETA: 0s - loss: 0.4293 - accuracy: 0.9137"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"137/200 [===================>..........] - ETA: 0s - loss: 0.4280 - accuracy: 0.9147"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"152/200 [=====================>........] - ETA: 0s - loss: 0.4254 - accuracy: 0.9155"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"167/200 [========================>.....] - ETA: 0s - loss: 0.4214 - accuracy: 0.9160"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.4192 - accuracy: 0.9163"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"195/200 [============================>.] - ETA: 0s - loss: 0.4191 - accuracy: 0.9175"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.4184 - accuracy: 0.9177 - val_loss: 0.5480 - val_accuracy: 0.8356\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 7/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.4438 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.4022 - accuracy: 0.9199"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 0s - loss: 0.4005 - accuracy: 0.9254"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 46/200 [=====>........................] - ETA: 0s - loss: 0.3991 - accuracy: 0.9266"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 60/200 [========>.....................] - ETA: 0s - loss: 0.3896 - accuracy: 0.9292"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 75/200 [==========>...................] - ETA: 0s - loss: 0.3858 - accuracy: 0.9287"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/200 [============>.................] - ETA: 0s - loss: 0.3888 - accuracy: 0.9267"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/200 [==============>...............] - ETA: 0s - loss: 0.3884 - accuracy: 0.9244"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.3889 - accuracy: 0.9229"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"135/200 [===================>..........] - ETA: 0s - loss: 0.3870 - accuracy: 0.9245"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.3842 - accuracy: 0.9254"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"165/200 [=======================>......] - ETA: 0s - loss: 0.3812 - accuracy: 0.9252"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"179/200 [=========================>....] - ETA: 0s - loss: 0.3790 - accuracy: 0.9262"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"194/200 [============================>.] - ETA: 0s - loss: 0.3778 - accuracy: 0.9275"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.3781 - accuracy: 0.9275 - val_loss: 0.5278 - val_accuracy: 0.8388\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 8/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.4009 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.3685 - accuracy: 0.9297"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 0s - loss: 0.3660 - accuracy: 0.9335"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 46/200 [=====>........................] - ETA: 0s - loss: 0.3641 - accuracy: 0.9341"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 60/200 [========>.....................] - ETA: 0s - loss: 0.3549 - accuracy: 0.9370"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 76/200 [==========>...................] - ETA: 0s - loss: 0.3518 - accuracy: 0.9354"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.3554 - accuracy: 0.9337"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/200 [==============>...............] - ETA: 0s - loss: 0.3539 - accuracy: 0.9336"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.3545 - accuracy: 0.9318"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"135/200 [===================>..........] - ETA: 0s - loss: 0.3529 - accuracy: 0.9329"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.3501 - accuracy: 0.9344"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"165/200 [=======================>......] - ETA: 0s - loss: 0.3474 - accuracy: 0.9341"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"179/200 [=========================>....] - ETA: 0s - loss: 0.3455 - accuracy: 0.9352"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"194/200 [============================>.] - ETA: 0s - loss: 0.3445 - accuracy: 0.9359"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.3447 - accuracy: 0.9358 - val_loss: 0.5122 - val_accuracy: 0.8406\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 9/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.3644 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.3401 - accuracy: 0.9316"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 32/200 [===>..........................] - ETA: 0s - loss: 0.3361 - accuracy: 0.9385"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 47/200 [======>.......................] - ETA: 0s - loss: 0.3331 - accuracy: 0.9402"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 62/200 [========>.....................] - ETA: 0s - loss: 0.3257 - accuracy: 0.9415"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 78/200 [==========>...................] - ETA: 0s - loss: 0.3240 - accuracy: 0.9403"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 94/200 [=============>................] - ETA: 0s - loss: 0.3251 - accuracy: 0.9395"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.3224 - accuracy: 0.9395"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"124/200 [=================>............] - ETA: 0s - loss: 0.3237 - accuracy: 0.9385"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.3237 - accuracy: 0.9384"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"154/200 [======================>.......] - ETA: 0s - loss: 0.3220 - accuracy: 0.9391"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/200 [========================>.....] - ETA: 0s - loss: 0.3187 - accuracy: 0.9406"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"183/200 [==========================>...] - ETA: 0s - loss: 0.3169 - accuracy: 0.9418"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.3167 - accuracy: 0.9421"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.3165 - accuracy: 0.9417 - val_loss: 0.5000 - val_accuracy: 0.8419\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 10/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 0s - loss: 0.3329 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 0s - loss: 0.3156 - accuracy: 0.9414"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 0s - loss: 0.3120 - accuracy: 0.9456"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 46/200 [=====>........................] - ETA: 0s - loss: 0.3091 - accuracy: 0.9477"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 0s - loss: 0.3009 - accuracy: 0.9498"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 76/200 [==========>...................] - ETA: 0s - loss: 0.2977 - accuracy: 0.9515"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.3013 - accuracy: 0.9485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"106/200 [==============>...............] - ETA: 0s - loss: 0.2998 - accuracy: 0.9493"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.3001 - accuracy: 0.9478"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"136/200 [===================>..........] - ETA: 0s - loss: 0.2989 - accuracy: 0.9476"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"151/200 [=====================>........] - ETA: 0s - loss: 0.2967 - accuracy: 0.9489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"166/200 [=======================>......] - ETA: 0s - loss: 0.2945 - accuracy: 0.9494"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.2925 - accuracy: 0.9505"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"195/200 [============================>.] - ETA: 0s - loss: 0.2926 - accuracy: 0.9502"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 1s 4ms/step - loss: 0.2921 - accuracy: 0.9500 - val_loss: 0.4903 - val_accuracy: 0.8431\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
}
],
"source": [
"bin_history = binary_model.fit(\n",
" raw_train_ds, validation_data=raw_val_ds, epochs=10)\n",
"\n",
"print()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EwidD-SwNIkz"
},
"source": [
"Next, you will use the `'int'` vectorized layer to build a 1D ConvNet:"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:39.281072Z",
"iopub.status.busy": "2024-08-16T07:38:39.280490Z",
"iopub.status.idle": "2024-08-16T07:38:39.285774Z",
"shell.execute_reply": "2024-08-16T07:38:39.285167Z"
},
"id": "nxLCInw7AUFr"
},
"outputs": [],
"source": [
"def create_model(vocab_size, num_labels, vectorizer=None):\n",
" my_layers =[]\n",
" if vectorizer is not None:\n",
" my_layers = [vectorizer]\n",
"\n",
" my_layers.extend([\n",
" layers.Embedding(vocab_size, 64, mask_zero=True),\n",
" layers.Dropout(0.5),\n",
" layers.Conv1D(64, 5, padding=\"valid\", activation=\"relu\", strides=2),\n",
" layers.GlobalMaxPooling1D(),\n",
" layers.Dense(num_labels)\n",
" ])\n",
"\n",
" model = tf.keras.Sequential(my_layers)\n",
" return model"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:39.288930Z",
"iopub.status.busy": "2024-08-16T07:38:39.288547Z",
"iopub.status.idle": "2024-08-16T07:38:39.457876Z",
"shell.execute_reply": "2024-08-16T07:38:39.457052Z"
},
"id": "_igpRY7p8NTK"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAALhCAIAAAA8eyHmAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1gTV9448JOQEEIICQJyExXx0reKwaIiFUQugiwoBUHsqtW34o9Hd6XUy3qt7lO0u1669mYryqqtosVqoQUvraXSvkjo4gXwhijWKwQDGhIQEMj8/jhv5x0nkAyQEBi+nz98zJkzZ74zmfkyc+ZkhkMQBAIAAMBeXHMHAAAAwLQg0QMAAMtBogcAAJaDRA8AACzH6+oM8fHxpogDAAAAQ998802X6nf5jP7EiROPHj3q6lwADFhFRUVFRUXmjqIPgRzSE48ePTpx4kRX5+J0dXglh8PJzMycO3duV5cEwMCEL4K7egrGYpBDeuL48eMJCQldzdvQRw8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPTAPE6fPj169Gger8sDfMFAcOTIEc4fbGxsaFPv378/e/ZstVpdW1tLVpswYUJzczO1GnUqh8OZOHFiL64B3bp16zIzM3ULyfCmTJliuqVDou+LGhoaRo0aFRUVxZoFUVVWVs6ePXv9+vU1NTVdndcsAZvLgFrZDn3xxRcEQTQ0NFALS0pKJk6cGBYWZmtr6+DgQBBEcXExLk9JSaHWxFPlcrm9vT1BEBcvXuzV6F+2dOnS9evXv/fee9TCf/7znwRBEARhYWFh0qWbKtHb2Nj4+/v3r5a7zeghEQSh1Wq1Wq0R2+wwSFMsyKD33nvv9ddfv3Tpklgs7uq8ZgmYqjd3vwG1sgyp1epZs2bNmTPnr3/9K7VcIBDY29unpaUdO3bMXLHp5+npmZWVtW3btuPHj/f+0uHCuS8Si8WVlZVsWhDVv//9b6FQ2L15zRKwuQyolWVox44dCoVi8+bNtHIrK6uMjIw//elPSUlJPj4+o0ePNkt4+slksri4uFWrVsXGxvZypyV03YDe1u0sDwY4giDS09N9fX1dXV11p4aHh2/atEmj0cTHx9M66/uOmJiYR48enTp1qpeXa/xEv2vXLg6H09jYeOHCBXyTgfq3S6lUJicnDx8+3NLS0tHRMTY2tqSkBE/y9/cn70ssWLAAIRQaGkqWqFQq/S3rUqlU1FsxW7duRQi1tbWRJXFxcQajwurq6lauXOnp6SkQCIYMGRIaGnro0KGmpib9IZFzWVpa2tnZRUREnD9/Hk/Kzs4mw7h169bcuXPt7e3xx/T0dHISub9KpVKODi6Xi39K3tbWlpmZOWPGDGdnZ6FQ6OXl9fHHH5OX/J0FSY2BemAwDPvevXsJCQlSqdTe3j4qKqoXzj11A2YSD159DoczZMiQ4uLikJAQsVhsbW0dFBR04cIFXGfr1q24DtlTcfbsWVzi4OCgfzPCyvaa0tLSmpoamUzWWYUtW7aEhYWVlZWtWLFCTztG2cMNJo0OeXt7I4R++OEHRitsREQXIYQyMzMNVhOJRFOnTqUVVlVVDRs2zMnJ6dSpUxqN5tq1a4GBgVZWVoWFhbhCSUmJSCSSyWQNDQ0EQTQ3N/v6+h47dsxgy3rMnDmTy+XeuXOHWujn53f06FGGUVVXV3t4eDg7O+fk5KjVaoVCkZqaihDavXu3npDwXE5OTjk5OfX19bdu3YqNjeVwOPv37yfrREdHI4QCAwPPnz/f2NhYVFRkYWGhVCrJSU1NTbimRCLRaDTkjO+//z5C6IMPPsAfc3Jy8MenT58qlcpPPvmEy+WuXr2ayXajLYh52NHR0YWFhQ0NDefOnRMKhZMmTWLwbbzEzc3NwsKiq3PRAmYYj0wmE4lEfn5+uE5xcfH48eMtLS3z8/PJOrqbyMfHB9/H01PHoLi4uLi4uC7NQuqbKxsUFDRo0CC5XN69lWKSQw4fPoz+uBlLKyR3e1JxcbFEIsH/VyqV7u7uCKEjR47gEvJmLGaUPdxg0uhMfX09QiggIIBWbmFh4evrq39eDA/dYVKTqlcT/aJFixBCGRkZZEl1dbVAIPDx8SFL8J2K2NhYrVa7aNGiDRs2MGlZj59++gkhtHz5crKkoKBg6NChra2tDKNavHix7lrPnDlTf6LHc1H/SjU3N7u6ugqFQoVCgUvw/nT69GndsPUk+szMTA6Hs3jxYrJyTk7O9OnTqbMvWLCAz+fX19eTJQwTPfOwc3JyyDr42gj/iWLOuIlefzz4NPDKlStkSVlZGUJIJpORJf0o0Zt3ZQMDA+3s7Awmtc50O9Hv2LEDIbRnzx5aZWqiJwhCLpfz+XyRSHTz5k1CJ9EbZQ9nkso6w+FwRo4cSSs0daLv1T767OxsLpdLHS7m7Ow8duzYS5cukU+zi4+P37hx47fffuvv719XV4fPnXsiJCRkwoQJhw4dqqurwyU7d+5MSUkhL0UNRpWVlYUQioiIoDZ75swZ2lguGjxXZGQkWSIQCEJCQpqammgXbpMnTza4FiqVCo8m/u233xYtWjRt2rS0tDRyalRUFHnticlkstbW1uvXrxtsudthT5o0ifw/Poeqqqrq6uKMyGA8IpEIXzhjXl5erq6upaWl1dXVvRaksZh3ZfPz858+fern59fzproEd2Hx+Xz91aZMmbJr167Gxsb4+PimpibaVKPs4UxSWWd4PJ5uVKbWe4m+paWlvr5eq9VKJBJqR/Ply5cRQrdv3yZrpqam+vr6FhYWxsfHc7lGiHDVqlXPnz///PPPEUIVFRW//vprYmIiw6hwBSsrqy6NBexsLicnJ4SQQqGgFopEIobNPnjwIDo62t3d/dtvv7W0tCTL6+vrN2/e7OXlZWdnh+Nfs2YNQuj58+fMY+5q2BKJhPw/DsaMAwERg3ikUiltlsGDByOEnjx5YvrojGxArSzJysoKIdTa2mqwZnJyckJCwrVr12ijMI2yhzNPZR1qa2vr/fEIpkr0HA6HViIQCKRSKY/HI/tMqIKCgsia+fn59fX1Xl5ey5cvLy0tNdiyQQkJCe7u7p999llLS8uHH364dOlS8ms2GJVAIJBIJM3NzRqNpksr2+Fc+CdCzs7OXV0FhJBGo4mKimptbc3NzR00aBB10qxZs1JTU5cuXVpRUaHVagmC2L17N0KIoDzLlMl2M0XYfUddXR3x8sNdcdbDGRAhxOVyX7x4Qa2gUqlojXRj9zMLVq6si4sLQgh3cxuUnp4+ZsyYAwcO4F4gzCh7OPNUpkutVhMEgVekN5kq0VtbW5O70ZgxY/bt24cQio2NbWtrI+/+Y9u3bx86dGhbWxv++Pvvvy9ZsuTkyZPff/+9UCiMjo5WKpUGW9aPx+O98847T548+fDDD7/++uvk5GTqVINRxcTEIIROnz5NrTBhwoR3331XT0h4Luo4qpaWlry8PKFQGB4ebjBmmvb29nnz5pWXl588eZIcIxwXF5ednd3e3n7hwgVnZ+fk5GRHR0d8cOpeGzLcbsYNu09pbm7GP6HErl69WlVVJZPJyKPOxcXl8ePHZAWFQvHgwQNaI93Y/cyClSs7btw4hBDDl5bY2NicPHlSJBLhS3mSUfZwJqmsQ3ib4xXpVV3t1EfMbsbOnDlTIpE8ePCgsLCQx+PduHGDIIiamhpPT88RI0acPn1apVLV1dXt3bvX2tqabFCj0YwfP/67777DH/Pz8/l8/rRp0168eKG/ZYPUajW+znrrrbdokwxGhW/Tu7i45ObmqtXqhw8fLlu2zMnJ6f79+3pCot7cV6vV5M39ffv2kYvWvdXW2SQ8XOzgwYPUOnPmzMnKyiIIIjg4GCG0Y8cOpVL5/Pnzn3/+eejQoQihc+fOGdxuekbdMA977dq16OW7f0wY92as/nhkMplEIgkJCdEzEAVf5n/66acajebOnTtz5851c3Oj3Z/sxu5nipux5l1Zc4260Wq1gwcP1r0/TLsZS3XkyBGEUGejbrq9hxtMGgRBzJ8/HyF09+5dajxHjx5FCOHDlqq/jropLy8PCAgQiUTu7u7Uu+R4BOuIESP4fL6jo2NYWBiZjP7yl7+Qf36uXr1KO5FPTU3V37JBuNu6tLRUd5KeqLDa2tqUlBQPDw8+n+/i4jJv3ryKigqDK0udSyKRhIeH5+Xl4Ulyubyzv7j4ZhFp/vz5ep7RgfcYpVKZlJTk7u7O5/OdnJwWL168bt06XIEcBqAbpO6Cuhr2xo0biZf7ByIjIw1+EXgwKA11cFtndANmHo9MJnNzc7tx40Z4eLhYLBYKhYGBgQUFBdT2VSpVYmKii4uLUCj09/cvLi728fHB7axdu1b/d61H9xJ9X17ZgIAAs4y6IQhiw4YNPB7v8ePH+CMtS3Q46GXZsmW0P2BG2cMNJo3g4GAbG5u2tjZqYXx8vJubG/XMFeuviR6APgXnPrMsuidn9N1jxpVloieJXqVSubm5JSUlmSw643j27JlQKExMTKQWlpSUcDgc2g+DMFYNrwQAgJ6QSCQ5OTknTpzYs2ePuWPpFEEQycnJtra21NHhd+/ejY2NXb9+/bx583o/JEj0AIA+atmyZRyd59FPmDDh4sWLZ86cUavV5gpMv5qamrt37+bl5VGH8aSlpW3btm3btm3UmuTz6Nvb200bU1cvAVDf67rRs3Zbtmwxd3QDTg+/DqN/mzt37qQ2gntde1Nvdt2YfWWZ6IM5pB/pXteN+R9U1HOE3uwAelkPvw6jf5urV69evXq1cdvsswbUygLmoOsGAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5ThdHeTQ1x5oBwAAA01X83Z3hlempKT0/jsHAOin8COjyWedgoSEBMgh3SaXyz/66KOuztWdRO/n5zd37txuzAjAAPTNN98ghOCQISUkJEAO6YluJHroowcAAJaDRA8AACwHiR4AAFgOEj0AALAcJPous7Gxob76fdeuXeaO6H/12cAA6KojR46QezLtMcUIofv378+ePVutVtfW1pLVJkyY0NzcTK1GncrhcCZOnNiLa0C3bt06/OBJWiEZ3pQpU0y3dEj0XdbQ0HDlyhWEUHR0NEEQfedhgX02MAC6B79hqqGhgVpYUlIyceLEsLAwW1tbBwcHgiDwa9BLSkpSUlKoNfFUuVyOXyWo55WcvWDp0qXr169/7733qIX//Oc/8WOELSwsTLp0SPT9ko2Njb+/v7mjAH2RqfcN8+57arV61qxZc+bMwS83JwkEAnt7+7S0tGPHjpkrNv08PT2zsrK2bdt2/Pjx3l86JHoAQL+xY8cOhUKxefNmWrmVlVVGRgaXy01KSqqoqDBLbAbJZLK4uLhVq1a1tbX18qIh0QMA+geCINLT0319fV1dXXWnhoeHb9q0SaPRxMfH0zrr+46YmJhHjx6dOnWql5cLid4IsrOzyTsq9+7dS0hIkEql9vb2UVFRlZWVuM6uXbtwhSFDhhQXF4eEhIjFYmtr66CgoAsXLuA6W7duxXXIS+OzZ8/iEgcHB2o7jY2NFy5cwJN4vC78vLmtrS0zM3PGjBnOzs5CodDLy+vjjz/WarUIIZVKRb1ztXXrVlyfLImLi8ONKJXK5OTk4cOHW1paOjo6xsbGlpSU6G6KW7duzZ07197eHn+sra3t6YZmu7q6upUrV3p6elpaWtrZ2UVERJw/fx5P6sm+0Uf2vZ4rLS2tqamRyWSdVdiyZUtYWFhZWdmKFSv0tKNnOzM5ljE9R4Ee3t7eCKEffviB0QobUVffPYjgfY8EQb3nSYqOjsaFhYWFDQ0N586dEwqFkyZNotaRyWQikcjPzw/XKS4uHj9+vKWlZX5+PllHJBJNnTqVOpePjw++m6Snjp7AqHJychBCH3zwwdOnT5VK5SeffMLlclevXk1WCA8P53K5d+7coc7l5+eXkZGB/19VVTVs2DAnJ6dTp05pNJpr164FBgZaWVkVFhbSNkVgYOD58+cbGxuLioosLCyUSmVnUbEbw3fGVldXe3h4ODk55eTk1NfX37p1KzY2lsPh7N+/n6zTk33D1PteUFDQoEGD5HK5wTVlkkMOHz6M/rgZSyv84IMPaJWLi4slEgn+v1KpdHd3RwgdOXIEl5A3YzEm29ngsczkKOhQfX09QiggIIBWbmFh4evrq39erHvvjIVE3x16En1OTg5Zgk+BqQkOn4xcuXKFLCkrK0MIyWQyssTUiX769OnUkgULFvD5/Pr6evwRn2ssX76crFBQUODm5vbixQv8cdGiRQghMu8TBFFdXS0QCHx8fGib4vTp052FMaAwTPSLFy9GCB07dowsaW5udnV1FQqFCoUCl/Qw0Zt03wsMDLSzszOY6YgeJPodO3YghPbs2UOrTE30BEHI5XI+ny8SiW7evEnoJHom29ngsczkKOgMh8MZOXIkrdDUiR66boxs0qRJ5P/xmUVVVRW1gkgkwpdvmJeXl6ura2lpaXV1dS+EFxUVRV6lYjKZrLW19fr16/hjWFiYl5fXoUOH6urqcMnOnTtXrFjB5/Pxx+zsbC6XGxUVRbbg7Ow8duzYS5cuPXr0iNry5MmTTbgmrJOVlYUQioyMJEsEAkFISEhTU5OxrvRNuu/l5+c/ffrUpM+kxD3v5K7YmSlTpuzatauxsTE+Pr6pqYk2lfl21nMsMz8KdPF4PN2oTA0SvZFJJBLy/5aWlggh3ANOkkqltFkGDx6MEHry5Inpo0P19fWbN2/28vKys7PDHZFr1qxBCD1//pysk5KS8vz5888//xwhVFFR8fPPP/+///f/8KSWlpb6+nqtViuRSKgd+pcvX0YI3b59m7oskUjUC2vEDnjDWllZicViarmTkxNCSKFQGGUp5t33es7Kygoh1NraarBmcnJyQkLCtWvXaKMwu7SdOzuWu3QU6GpraxMKhQZXwbgg0fe2uro64uWXBuDDDB9yCCEul/vixQtqBZVKRWuE093Xv8yaNSs1NXXp0qUVFRVarZYgCPy0dGpI8+fPd3Jy+uyzz1paWj788MNFixbZ2dnhSQKBQCqV8ni81tZW3cvDoKCg7kUFBAKBRCJpbm7WaDTU8pqaGoSQs7Mz/tjDfcO8+17Pubi4IIRwN7dB6enpY8aMOXDgAO4FwhhuZ/16chSo1WqCIPCK9CZI9L2tubkZ/5APu3r1alVVlUwmI797FxeXx48fkxUUCsWDBw9ojVhbW5MH5JgxY/bt22dwuTwe7/r16xcuXHB2dk5OTnZ0dMRHrO5VpEAgWL58+ZMnTz788MOMjIx33nmHOjU2NratrY0crYFt37596NChvT86mE1iYmIQQtSBdy0tLXl5eUKhMDw8HJf0cN8w175nLOPGjUMIGewbwWxsbE6ePCkSifC1KYnJdjao20cB3rx4RXoTJPreJpFINmzYIJfLGxsbL168uGDBAktLy48//pisEBYWVlVV9dlnnzU0NFRWVr7zzjvkCRfptddeq6ioePjwoVwuv3v3bkBAAJNFW1hYTJ8+XaFQ7Ny5s7a2tqmp6fz583v37tWtuXz5cqFQuGnTptDQ0JEjR1In/eMf//D09Hz77bfPnDlTX1//9OnTtLS0999/f9euXb082I5l/vGPf3h4eKSkpOTm5mo0moqKij//+c/V1dUff/wx7lhAPd43TLrvBQcH29vbFxUVGX/T/EEmkw0ePLi0tJRh/bFjx6alpdEKmWxng5gcBQsWLOBwOL///jt1RjwEMywsjOGCjKard2/RgB91Q+t63rlzp1wup5Zs3LiRePkCOTIyEs8rk8nc3Nxu3LgRHh4uFouFQmFgYGBBQQG1fZVKlZiY6OLiIhQK/f39i4uLfXx8cDtr167FdcrLywMCAkQikbu7OzkIwWCf+M2bN5VKZVJSkru7O5/Pd3JyWrx48bp16/BU2oCBpUuXIoR++eUX3S2AhyGPGDGCz+c7OjqGhYWdO3cOT6Jtim7sYOzDcNQNQRC1tbUpKSkeHh58Pl8ikYSHh+fl5VErdHvfIEy87xEEERAQYOpRNwRBbNiwgcfjPX78GH9UKpXUna3DQS/Lli2jDRzSs52ZH8t6jgIsODjYxsamra2NWhgfH08dw0aC4ZWsgg82c0fByIEDB5iMFQMGMU/0JtV39r2eJHqVSuXm5paUlGSy6Izj2bNnQqEwMTGRWlhSUsLhcKgjO0kwvBKYx969e1euXGnuKAB4iUQiycnJOXHixJ49e8wdS6cIgkhOTra1tU1NTSUL7969Gxsbu379+nnz5vV+SJDowf9JT0+PiYlpaGjYu3fvs2fP4PXNwLyWLVvG0Xke/YQJEy5evHjmzBm1Wm2uwPSrqam5e/duXl4edRhPWlratm3btm3bRq1JPo++vb3dtDF19RIAQddNt+zcuZO62XHfX1+zf/9+hBCPxxs/fvylS5fMHQ5LmL3rpq/te5BDeqJ7XTcwTKKXrF69uu+/CSQxMTExMdHcUQAj6xf7HjAp6LoBAACWg0QPAAAsB4keAABYDhI9AACwXHduxur++hEA0Bn8bBazvBK6z4Ic0m3d23Qc4uUf+BqewXzPrgMAAIBeftwsE11O9AD0a/hXYHB+DQYU6KMHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMtBogcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAluOZOwAATOvXX3+Vy+Xkx/LycoTQ9u3byRI/P79p06aZITIAeguHIAhzxwCACeXl5YWGhvL5fC6Xfv2q1WpbW1t/+umnkJAQs8QGQO+ARA9YTqvVOjs7K5XKDqc6ODgoFAoLC4tejgqA3gR99IDluFzu/PnzLS0tdSdZWlouWLAAsjxgPUj0gP3efPPNFy9e6Ja/ePHizTff7P14AOhl0HUDBoThw4ffv3+fVuju7n7//n0Oh2OWkADoNXBGDwaEhQsX8vl8agmfz1+8eDFkeTAQwBk9GBDKy8v/67/+i1Z47dq1sWPHmiUeAHoTnNGDAeGVV14ZO3Ys9fz91VdfhSwPBghI9GCgeOutt8gBNnw+f9GiReaNB4BeA103YKB4+PDhsGHD8A7P4XDu3r07fPhwcwcFQG+AM3owULi7u/v6+nK5XC6X6+vrC1keDByQ6MEAsnDhQg6Hw+VyFy5caO5YAOg90HUDBpDa2lpnZ2eEUFVV1eDBg80dDgC9hTCluLg4c68fAAD0dXFxcSZNxSZ/TPGUKVPeffddUy8FgM4kJCSkpKT4+fnhj7/++iuHwwkICDBvVOYil8s/+uijzMxMcwcC/s/u3btNvQiTJ/ohQ4bMnTvX1EsBoDMJCQl+fn7kThgREYEQEovFZg3KnD766CM4JPuUb775xtSLgBePgIFlIKd4MGDBqBsAAGA5SPQAAMBykOgBAIDlINGD/uH06dOjR4/m8eCuUv9WW1vL+cOECROam5s7m8rhcCZOnGiuOFkGEj0bNDQ0jBo1KioqijULoqqsrJw9e/b69etramp6baFmWdOBwMHBgSCI4uJihFBJSUlKSoruVLlcbm9vTxDExYsXzRQm2/SVRG9jY+Pv79+/Wu42o4dEEIRWq9VqtUZss8MgTbEgg957773XX3/90qVLvTlgxixrStUH91vjEggE9vb2aWlpx44dM3cs7AcXwmwgFosrKyvZtCCqf//730KhsJcXapY1HVCsrKwyMjL+9Kc/JSUl+fj4jB492twRsVlfOaMHoDO9n+VB7wgPD9+0aZNGo4mPj6d11gPjMn+i37VrF4fDaWxsvHDhAr4DQ73hplQqk5OThw8fbmlp6ejoGBsbW1JSgif5+/uTN20WLFiAEAoNDSVLVCqV/pZ1qVQq6o2grVu3IoTa2trIEvLRPXqiwurq6lauXOnp6SkQCIYMGRIaGnro0KGmpib9IZFzWVpa2tnZRUREnD9/Hk/Kzs4mw7h169bcuXPt7e3xx/T0dHISebRIpVKODi6X++jRI7xSmZmZM2bMcHZ2FgqFXl5eH3/8MdlN0VmQ1BiohyXDsO/du5eQkCCVSu3t7aOiovry+bLumjJZEbzdOBzOkCFDiouLQ0JCxGKxtbV1UFDQhQsXcJ2tW7fiOmS3zNmzZ3GJg4MDtR3m+22/tmXLlrCwsLKyshUrVuipZpR9zOBhy2YmfZJOXFwcw4f1iESiqVOn0gqrqqqGDRvm5OR06tQpjUZz7dq1wMBAKyurwsJCXKGkpEQkEslksoaGBoIgmpubfX19jx07ZrBlPWbOnMnlcu/cuUMt9PPzO3r0KMOoqqurPTw8nJ2dc3Jy1Gq1QqFITU1FCO3evVtPSHguJyennJyc+vr6W7duxcbGcjic/fv3k3Wio6MRQoGBgefPn29sbCwqKrKwsFAqleSkpqYmXFMikWg0GnLG999/HyH0wQcf4I85OTn449OnT5VK5SeffMLlclevXs1ku9EWxDzs6OjowsLChoaGc+fOCYXCSZMmMfg2XuLm5mZhYdHVuRBCmZmZXZ2L0FlTgtmKyGQykUjk5+eH6xQXF48fP97S0jI/P5+so7ttfXx88O1HPXWwoKCgQYMGyeXybqwRQRD4KTfdm9eIiouLJRIJ/r9SqXR3d0cIHTlyBJeQN2Mxo+xjBg9bM2KeJ7utTyd6/LK3jIwMsqS6ulogEPj4+JAlx48fRwjFxsZqtdpFixZt2LCBSct6/PTTTwih5cuXkyUFBQVDhw5tbW1lGNXixYt1k8vMmTP1J3o8F/WvVHNzs6urq1AoVCgUuATvzadPn9YNW0+iz8zM5HA4ixcvJivn5ORMnz6dOvuCBQv4fH59fT1ZwjDRMw87JyeHrIOvjfCfKOb6SKLXvyIymQwhdOXKFbKkrKwMISSTyciSniT6wMBAOzu7bqenPpjoCYKQy+V8Pl8kEt28eZPQSbFWiOgAACAASURBVPRG2ceYJBNz6YVEb/6uGz2ys7O5XC51iJuzs/PYsWMvXbqEuyAQQvHx8Rs3bvz222/9/f3r6urwuXNPhISETJgw4dChQ3V1dbhk586dKSkp5OWzwaiysrLQHw/PIp05c4Y2kowGzxUZGUmWCASCkJCQpqamH374gVpz8uTJBtdCpVLZ2NgghH777bdFixZNmzYtLS2NnBoVFUVe+WIymay1tfX69esGW+522JMmTSL/j8/gqqqqurq4vsDgiohEIm9vb/Kjl5eXq6traWlpdXV1z5een5//9OlT8mGc7DBlypRdu3Y1NjbGx8c3NTXRphplH2OSTFis7yb6lpaW+vp6rVYrkUioHc2XL19GCN2+fZusmZqa6uvrW1hYGB8fz+UaYY1WrVr1/Pnzzz//HCFUUVHx66+/JiYmMowKV7CysurSWMDO5nJyckIIKRQKaqFIJGLY7IMHD6Kjo93d3b/99ltLS0uyvL6+fvPmzV5eXnZ2djj+NWvWIISeP3/OPOauhi2RSMj/42DMOHixJwyuiFQqpc2CX3Ly5MkT00fXXyUnJyckJFy7du2vf/0rtdwo+xjzZMJWfSXRczgcWolAIJBKpTwej+wzoQoKCiJr5ufn19fXe3l5LV++vLS01GDLBiUkJLi7u3/22WctLS0ffvjh0qVLyZ3MYFQCgUAikTQ3N2s0mi6tbIdz4Z8I4ZcidZVGo4mKimptbc3NzR00aBB10qxZs1JTU5cuXVpRUaHVagmCwE/EJiivG2Oy3UwRNgvU1dURL7+4Dad48p1WXC73xYsX1AoqlYrWSDf22/4uPT19zJgxBw4cOHz4MFlolH2MeTJhq76S6K2trcldf8yYMfv27UMIxcbGtrW1kSMWsO3btw8dOrStrQ1//P3335csWXLy5Mnvv/9eKBRGR0crlUqDLevH4/HeeeedJ0+efPjhh19//XVycjJ1qsGoYmJiEEKnT5+mVpgwYQL5ApYOQ8JznTp1ipylpaUlLy9PKBSGh4cbjJmmvb193rx55eXlJ0+eJEcox8XFZWdnt7e3X7hwwdnZOTk52dHREScU3etlhtvNuGGzQ3NzM/7lJ3b16tWqqiqZTObi4oJLXFxcHj9+TFZQKBQPHjygNdKN/ba/s7GxOXnypEgkwhfTJKPsY0ySCZsZuc//ZcxvMsycOVMikTx48KCwsJDH4924cYMgiJqaGk9PzxEjRpw+fVqlUtXV1e3du9fa2pq8t6bRaMaPH//dd9/hj/n5+Xw+f9q0aS9evNDfskFqtRpf5b311lu0SQajwoMEXFxccnNz1Wr1w4cPly1b5uTkdP/+fT0hUYcWqNVqcmjBvn37yEXr3h7sbBIerHbw4EFqnTlz5mRlZREEERwcjBDasWOHUql8/vz5zz//PHToUITQuXPnDG43PaNumIe9du1a9PIdSyb6yM1Y/Ssik8kkEklISIieUTe4d+LTTz/VaDR37tyZO3eum5sb7WZsZ9uffaNuaI4cOYIQ6mzUTbf3MYOHrRkNoFE35eXlAQEBIpHI3d19z549ZDkePztixAg+n+/o6BgWFkYmo7/85S/kn6urV6/STuRTU1P1t2wQ7rYuLS3VnaQnKqy2tjYlJcXDw4PP57u4uMybN6+iosLgylLnkkgk4eHheXl5eJJcLu/sLzS+VUWaP3++nieE4ESvVCqTkpLc3d35fL6Tk9PixYvXrVuHK5CDEHSD1F1QV8PeuHEj8XKfRmRkpMEvAg8GpaEOrdOvG4led02Zr4hMJnNzc7tx40Z4eLhYLBYKhYGBgQUFBdT2VSpVYmKii4uLUCj09/cvLi728fHB7axduxbX6WwnCQgI6NejbmjHaYeDXpYtW0b7s2eUfczgYWsuvZDoOcTLG8W44uPjUa+8KAuAznA4nMzMzF57eZ63t3dtbW2fHchx/PjxhIQEkx71oKt6IU/2lT56AAAAJgKJHgAAWG4gJnrdh8CQ/v73v5s7ugGHNV8HfkZNaWnp48ePORzOpk2bzB0RAP+LtQ9L0gM6KPsU1nwdq1evXr16tbmjAKADA/GMHgAABhRI9AAAwHKQ6AEAgOUg0QMAAMuZ/Gbso0eP8CPjATAX3d8VD1h4U8Ah2ac8evRoyJAhpl2GSX93S757DwAAQGdM/QgEk5/Rx8XFwSMQgBn18iMQ+jh4BEIfhB+BYFLQRw8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBy/SbRe3t763nMIbZ161ajL7ekpIS6iJEjR1KnqlQq6lSjLx0A87p///7s2bPVanVtbS25n0+YMKG5uZlajTqVw+FMnDjRXAF36NmzZ3v37g0ODh40aJBQKBw1atT8+fNLS0tp1fz9/XWzSkpKCq1aSUlJZGSkVCoVi8WhoaG099CuW7cOv8arT+k3iR4h9M0335DDQpOSkhBCZ86cIUsSEhJMsVBvb2+CIJYsWYIQ2rhx4507d6hTpVIpQRCzZ8/evn17Hxyy1tDQMGrUqKioKNYsCPSmkpKSiRMnhoWF2draOjg4EASBX3peUlJCS394qlwux68A1PMyS7NYs2bNihUroqOjb9y4UVdXd+DAgZKSEh8fn+zs7K429dtvv73++utisfjmzZu///77iBEjpk+f/uOPP5IVli5dun79+vfee8+oa9BT/SnR9w4bGxt/f39a4X//938jhL766iutVkub9OTJkx9//HHhwoUmWnRPEASh1Wp1Y+6JDoM0xYL6I6N/g73cPpVarZ41a9acOXPwq8xJAoHA3t4+LS3t2LFjvROJUbz99tvvvPOOs7OztbV1QEDA0aNH29vb//a3v9GqFRcX035q9NFHH5FTtVrtkiVLpFLpwYMHXVxcHBwcvvjiC09Pz8TExJaWFlzH09MzKytr27Ztfernx/0m0ZeUlOj/ne3XX39tulc9TJ06ddSoUQ8fPvzpp59ok7766qvQ0FAXFxcTLbonxGJxZWXl6dOnWbMg0Gt27NihUCg2b95MK7eyssrIyOByuUlJSRUVFWaJravS09PT0tKoJTKZTCgUVlZWdulC/Ndff71+/XpcXJxQKMQlFhYWb7755sOHD3Nzc6mNx8XFrVq1qq2tzSjx91y/SfRmt3jxYoTQwYMHaeUHDx7E5/sAsAZBEOnp6b6+vq6urrpTw8PDN23apNFo4uPjaZ31/UVjY2NTU9O4ceO6dGvt559/RgjR7kDgj3l5edTCmJiYR48enTp1yhjBGgHbEr1SqUxOTh4+fLilpaWjo2NsbGxJSQmeRL3TsmDBAoRQaGgoWaJSqfCr4BobGy9cuIALebz/e0TEW2+9xeVys7OzVSoVWfjbb789efJk1qxZBpeO1dXVrVy50tPTUyAQDBkyJDQ09NChQ01NTfoXTc5laWlpZ2cXERFx/vx5PCk7O5tchVu3bs2dO9fe3h5/TE9PJyeRR6NUKtW93cTlch89eoQQamtry8zMnDFjhrOzs1Ao9PLy+vjjj8kOmc6CpMZAPewZhn3v3r2EhASpVGpvbx8VFVVZWdnjvaA79ES7detWHCrZbXL27Flc4uDggEs62zi4nMPhDBkypLi4OCQkRCwWW1tbBwUFkTfxetK+iZSWltbU1Mhkss4qbNmyJSwsrKysbMWKFXraMco+YPCw6gb8XJaNGzfSyg8fPuzt7S0SiSQSCe7hoU4tLy9HCNEeQObm5oYQol3ceHt7I4R++OGHHsZpNKZ8kA4RFxdnoof16N6MJQiiqqpq2LBhTk5Op06d0mg0165dCwwMtLKyKiwsxBVKSkpEIpFMJmtoaCAIorm52dfX99ixY9RGRCLR1KlTO1xoWFgYQujzzz+nhpGSksJw6dXV1R4eHs7Ozjk5OWq1WqFQpKamIoR2796tZ9F4Licnp5ycnPr6+lu3bsXGxnI4nP3795N1oqOjEUKBgYHnz59vbGwsKiqysLBQKpXkpKamJlxTIpFoNBpyxvfffx8h9MEHH+CPOTk5+OPTp0+VSuUnn3zC5XJXr17NZPvQFsQ87Ojo6MLCwoaGhnPnzgmFwkmTJnW48bsNIZSZmam/DpNodVfcx8cH33vUUweTyWQikcjPzw+vaXFx8fjx4y0tLfPz843SflBQ0KBBg+Ryuf7VJAgCDwgxWO3w4cPUHYNUXFwskUjw/5VKpbu7O0LoyJEjuIS8GYsZZR8weFh1g0KhcHJySkxMpJVPnTp14cKFly5damhoKC8vxzfeVqxYQVaYMWMGQqioqIg61+3btxFCr732GrWwvr4eIRQQEMAkHtPlSRKrEv2iRYsQQhkZGWRJdXW1QCDw8fEhS/AdktjYWK1Wu2jRog0bNtBa1pPo8d0nci98/vy5RCIpKytjuHTc+UNLOjNnztSf6PFc1L9Gzc3Nrq6uQqFQoVDgEny0nD59WjdmPYk+MzOTw+EsXryYrJyTkzN9+nTq7AsWLODz+fX19Qa3D21BzMPOyckh6+DbMPhPlLEwSfRMou1hokcIXblyhSwpKytDCMlkMj3zMm8/MDDQzs6OSe5jmOh37NiBENqzZw+tnJroCYKQy+V8Pl8kEt28eZPQSfRG2QeYHNRdUltb6+3tnZCQ0NbWZrDy5MmTqZm9w0SPz+V14+FwOCNHjmQSUi8kelZ13WRnZ3O5XOogP2dn57Fjx166dAl3TSCE4uPjN27c+O233/r7+9fV1eFzaobeeOMNqVRaXFx8/fp1hNC33347cuRILy8vhkvPyspCCEVERFDbPHPmjO5AXSo8V2RkJFkiEAhCQkKamppoF4Z4p9RPpVLZ2NgghH777bdFixZNmzaNepMqKiqKvLLGZDJZa2srXt8uYR72pEmTyP/jM8SqqqquLq6HmEfbbSKRCF/OY15eXq6urqWlpdXV1T1vPD8//+nTp35+fj1vCsNdcHw+X3+1KVOm7Nq1q7GxMT4+vqmpiTbVKPsAk4OaucbGxvDw8FdffTUjI8PCwsJgffxXB1/pIoSkUiluhNYmOYmKx+PpbhNzYU+ib2lpqa+v12q1EomE2gF9+fJlhBC+vMJSU1N9fX0LCwvj4+O53C5sASsrq3nz5iGEDhw4gP99++23GS4dV7CyshKLxV1dKd25nJycEEIKhYJaKBKJGDb74MGD6Ohod3f3b7/91tLSkiyvr6/fvHmzl5eXnZ0djn/NmjUIoefPnzOPuathSyQS8v84mF4eptmlaLtNNxEMHjwYIfTkyROjtG9cVlZWCKHW1laDNZOTkxMSEq5du0YbhWmUfYD5Qc1EW1tbfHy8m5vbl19+ySTLI4TwaDryO3rllVcQQrQ/MI8fP0YIjR49Wndx5OAcs2NPohcIBFKplMfjtba26l65BAUFkTXz8/Pr6+u9vLyWL1+u++s4jt678HiAzZEjR+7cuSOXy998802GSxcIBBKJpLm5WaPRdNa47qI7m6umpgYh5OzsbHi76NBoNFFRUa2trbm5uYMGDaJOmjVrVmpq6tKlSysqKrRaLUEQu3fvRggRlCFo+reP6cI2HYbRcrncFy9eUCtQb8tjejZOXV0d8fJIPpw+cLrvefvGhRMc7mg2KD09fcyYMQcOHMA9+5hR9gHmBzUTSUlJLS0tx48fJ+9jjxw5sqioSM8s+MKC/I7wEi9dukStgz+GhIRQC9VqNUEQfWfUNXsSPUIoNja2ra2N9ovk7du3Dx06lBzQ+vvvvy9ZsuTkyZPff/+9UCiMjo5WKpXU+tbW1uTxNmbMmH379lGnTp48+dVXX33y5Mn8+fOjo6Pt7OyYLz0mJgYhRBtsPmHChHfffVfPovFc1HFaLS0teXl5QqEwPDy8axsIofb29nnz5pWXl588eZI8B4mLi8vOzm5vb79w4YKzs3NycrKjoyPOKbrXnvq3D8m4YZsak2hdXFzwuRumUCgePHhAa0fPxmlubsY/K8WuXr1aVVUlk8nIXNDD9o1r3LhxSOfUtTM2NjYnT54UiUSff/45tdwo+wCTg5qJv//979evX//uu+8EAkGHFdLT0318fKglxB+39MhhdYGBga+++uqJEyfI0WXt7e1ff/21u7s7tYcK/XGajzdjn2DUHn+6Xr4ZW1NT4+npOWLEiNOnT6tUqrq6ur1791pbW5P34jQazfjx47/77jv8MT8/n8/nT5s27cWLF2QjM2fOlEgkDx48KCws5PF4N27coC0a36dCCP3www9dWjoehODi4pKbm6tWqx8+fLhs2TInJ6f79+/rWTR16IJarSaHLuzbt49cNO1GKBVtEh4Md/DgQWqdOXPmZGVlEQQRHByMENqxY4dSqXz+/PnPP/88dOhQhNC5c+cMbh89o26Yh7127Vr08k3LnkNdHHXTWbS4a+LTTz/VaDR37tyZO3eum5sb7WZpZxtHJpNJJJKQkBA9o2560r7RR91otdrBgwfr3vil3YylOnLkCEKos1E33d4HDB5WBEHMnz8fIXT37t3OVkf35y8kcqPt378fIbR8+fLbt283NTWVl5fjZqmjbgiCkMvluAu3urq6trY2KSmJx+OdPXuWtkQ8LhMfVgbBqJsO6H5n1PGCeNzuiBEj+Hy+o6NjWFgYmaT+8pe/kLNcvXqVdiKfmpqKq5WXlwcEBIhEInd3d91RBwRBVFdX83g8d3f39vZ22iQ9S8dqa2tTUlI8PDz4fL6Li8u8efMqKirIqZ0tmjqXRCIJDw/Py8vDk3Rfe03OhW+FkebPn6/nCSR4j1QqlUlJSe7u7nw+38nJafHixevWrcMVyEEFukHqLqirYW/cuJF4uVsjMjKSyc7ABGKQ6PVHi6lUqsTERBcXF6FQ6O/vX1xcTJ4Arl27trONg8lkMjc3txs3boSHh4vFYqFQGBgYWFBQYKz2AwICjDvqhiCIDRs28Hi8x48f44+046XDQS/Lli2j/WUyyj5g8LAKDg62sbHRM4qGdrpNRSb65ubmb775JiYmBv/MRSKRTJ8+/ejRo7qtXb58OSIiwtbW1sbGJjg4mPY9YvhmAPUMUg9I9AD0FMNEb1I40Zs3Box5olepVG5ubklJSaYOqYeePXsmFAp1B8WbEX7kLe0HOnrA8EoAgHlIJJKcnJwTJ07s2bPH3LF0iiCI5ORkW1vbLo2TNqm7d+/GxsauX78ej9DrIyDRAwA6NmHChIsXL545c0atVps7lo7V1NTcvXs3Ly+v7wzlSktL27Zt27Zt28wdyEsg0QNgQvgZNaWlpY8fP+ZwOKZ7wKqJDB8+PDc319bW1tyBdMzZ2bmgoGDs2LHmDuT/bN++vU+dy2MmfC4SAGD16tWrV682dxRgoIMzegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMuZ/GZsUVFRfHy8qZcCgB67d+/GbxQC+PE1cEj2KUVFRVOmTDHpIjhEV96N21X/+te/dH+jD4AZXb16FSFEvkUAgL7Az89v5cqVpmvftIkegL5m7ty5CCH8VEIABgjoowcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMtBogcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACW4xAEYe4YADChr7766l//+ld7ezv+WFtbixBycHDAHy0sLFauXPnWW2+ZLT4ATA8SPWC5ioqKMWPG6Klw69at0aNH91o8APQ+6LoBLDd69GiZTMbhcHQncTgcmUwGWR6wHiR6wH5vvfWWhYWFbjmPx1u0aFHvxwNAL4OuG8B+VVVV7u7uWq2WVs7hcB4+fOjm5maWqADoNXBGD9jP1dX19ddf53Jf2tu5XO7UqVMhy4OBABI9GBAWLlxIK+FwODDYBgwQ0HUDBoRnz545OTm1traSJTweT6FQ2NvbmzEqAHoHnNGDAcHOzm7GjBnkLVkLC4vw8HDI8mCAgEQPBooFCxaQ92MJgliwYIF54wGg10DXDRgonj9/bm9v39zcjBCysrKqra0ViUTmDgqA3gBn9GCgsLa2jomJ4fP5fD4/JiYGsjwYOCDRgwHkz3/+c2tra2tr65///GdzxwJA7+GZOwBG5HL5w4cPzR0F6Pfa29utra0JglCr1cePHzd3OKDfc3d39/PzM3cUDBD9QVxcnLm3EwAA0MXFxZk7OzLSP87oEUJxcXHffPONuaMY6DgcTmZm5ty5c80dSPf98ssvHA5n2rRpPW/q+PHjCQkJBAxnGKji4+PNHQJT/SbRA2AUAQEB5g4BgN4GiR4MLLQn3gAwEMBODwAALAeJHgAAWA4SPQAAsBwkesN27drF4XA4HM6QIUOM2OzXX3+Nm7WysupJHcBu9+/fnz17tlqtrq2t5fxhwoQJ+FkOJOpUDoczceJEcwXcoWfPnu3duzc4OHjQoEFCoXDUqFHz588vLS2lVfP39+foSElJoVUrKSmJjIyUSqVisTg0NPTChQvUqevWrcvMzDTt+vQ3kOgNW716NUEQMpnMuM3OmzePIIiQkJCu1mloaBg1alRUVJRx4zGdfhdw31FSUjJx4sSwsDBbW1sHBweCIIqLi3E5Lf3hqXK53N7eniCIixcvminkjq1Zs2bFihXR0dE3btyoq6s7cOBASUmJj49PdnZ2V5v67bffXn/9dbFYfPPmzd9//33EiBHTp0//8ccfyQpLly5dv379e++9Z9Q16N8g0fc/BEFotVrdF+P1WWYP2MbGxt/f31xL7za1Wj1r1qw5c+b89a9/pZYLBAJ7e/u0tLRjx46ZK7ZuePvtt9955x1nZ2dra+uAgICjR4+2t7f/7W9/o1UrLi6m/djno48+IqdqtdolS5ZIpdKDBw+6uLg4ODh88cUXnp6eiYmJLS0tuI6np2dWVta2bdvgx88kSPT9j1gsrqysPH36tLkDYarfBdxH7NixQ6FQbN68mVZuZWWVkZHB5XKTkpIqKirMEltXpaenp6WlUUtkMplQKKysrOzSL85+/fXX69evx8XFCYVCXGJhYfHmm28+fPgwNzeX2nhcXNyqVava2tqMEn9/B4kegL6IIIj09HRfX19XV1fdqeHh4Zs2bdJoNPHx8bTO+v6isbGxqalp3LhxHA6H+Vw///wzQoh2BwJ/zMvLoxbGxMQ8evTo1KlTxgi232NholcqlcnJycOHD7e0tHR0dIyNjS0pKcGTsrOzyTs89+/fT0hIEIvF9vb2CxcufPbs2b1792bNmiUWi11cXJYuXarRaHQbLy8vj4yMlEgk1tbWQUFBtLtAehZNzv7GG29IJBKRSBQQEFBQUNDhIvTUoa4CPsKpJffu3UtISJBKpfb29lFRUZWVlR22bG1tPXny5Nzc3NDQUDxjYmJitza2Yd0LmHoDvLi4OCQkRCwW07b51q1bcR2yW+bs2bO4xMHBgdpOY2PjhQsX8CQer3/8SLC0tLSmpkbPnaEtW7aEhYWVlZWtWLFCTzt1dXUrV6709PS0tLS0s7OLiIg4f/48nsR8zzG4Y3cDfqLJxo0baeWHDx/29vYWiUQSiQT38FCnlpeXI4RowyLwG95pFzfe3t4IoR9++KGHcbJE7z1Wpwfi4uIYPjyoqqpq2LBhTk5Op06d0mg0165dCwwMtLKyKiwsJOtER0cjhGJjYy9evNjQ0PDVV18hhCIiIqKjo69cuaLRaPbu3YsQevfdd6kty2QyiUQSFBRUUFCg0WiKi4vHjx9vaWmZn5/PcNG3b9+WSqVubm4//vijRqMpKysLCwsbPny4QCAgl8KkDrkKTU1NtJLo6OjCwsKGhoZz584JhcJJkyZ11vK1a9dCQ0MdHR1pLeuHEMrMzGRevycBEwQhk8lEIpGfnx+uo7vNCYIQiURTp06lzuXj44NvSOqpgwUFBQ0aNEgul3djjQiCwEM7ujevQYcPH0YIffDBB7Ty4uJiiUSC/69UKt3d3RFCR44cwSXkzVisurraw8PDyckpJyenvr7+1q1bsbGxHA5n//79ZB2DXwSTY6qrFAqFk5NTYmIirXzq1KkLFy68dOlSQ0NDeXk5fqX7ihUryAozZsxACBUVFVHnun37NkLotddeoxbW19cjhAICArodpEHM85LZsS3RL1q0CCGUkZFBllRXVwsEAh8fH7IE79mnTp0iS8aOHYsQ+uWXX8gSDw+PMWPGUFvG51bUpFBWVoYQkslkDBeNH4F04sQJssLjx48FAgE11TKpQ3SeN3NycsgS/MhPpVLZWctPnjyxtrY2b6LXEzDxxza/cuUKWULb5kTPEn1gYKCdnV23E5ZJE/2OHTsQQnv27KGVUxM9QRByuZzP54tEops3bxI6iX7x4sUIoWPHjpElzc3Nrq6uQqFQoVDgEoNfBJNjqktqa2u9vb0TEhLa2toMVp48eTI1s3eY6PG5vG48HA5n5MiR3QuSiX6U6NnWdZOdnc3lcqkj+ZydnceOHXvp0qVHjx5Ra1K7+XA3KLXEzc2tqqqK1riVlZWvry/50cvLy9XVtbS0tLq6msmiz549ixAKDw+nLnf06NHURTCpo8ekSZPI/+NzPXItdFt2dHR85ZVXGLZsInoCxkQiEb4Gx2jbvIfy8/OfPn3aN58njru5+Hy+/mpTpkzZtWtXY2NjfHx8U1MTbWpWVhZCKDIykiwRCAQhISFNTU20Pg09XwTzY4qJxsbG8PDwV199NSMjg3xXux74r05OTg7+KJVKcSO0NslJVDweT3ebDEysSvQtLS319fVarVYikVB/cHH58mWEEL6+I9na2pL/53K5FhYW1tbWZImFhYXucEB7e3vajaPBgwcjhJ48eWJw0S0tLRqNxsrKgoVUuwAAIABJREFUysbGRrcFMn6DdfSTSCTk/y0tLRFCeC06a9nOzo5hyybSWcAk3aOX3Oamj86c8E/kWltbDdZMTk5OSEi4du0abRQm3ietrKzEYjG13MnJCSGkUCiohXr2HObHlEFtbW3x8fFubm5ffvklkyyPEHJxcUGUrxufmtD+wDx+/BghpHs+1NbWRg7OGeBYlegFAoFUKuXxeK2trboXL0FBQT1sH/f6UeH9b/DgwQYXLRAIxGJxc3NzQ0MDtYWnT59S4zdYp3s6a7nvp8u6ujri5eF35DbHH7lc7osXL6gVVCoVrZEujevoI3CC093lOpSenj5mzJgDBw7gnn1MIBBIJJLm5mbasIKamhqEkLOzM5OWjXtMJSUltbS0HD9+nLwlPnLkyKKiIj2z4AsL8uvGS7x06RK1Dv5I+12hWq0mCAJvRsCqRI8Qio2NbWtrow2G2b59+9ChQ3s+orahoYH6o+2rV69WVVXJZDK8MxlcdEREBPqjCwWrra29desWtT6TOt2j27JCoej7o7Cbm5vxb0Ex2jZHCLm4uOATOkyhUDx48IDWiLW1NfnHYMyYMfv27TNx1EYwbtw4pHPq2hkbG5uTJ0+KRKLPP/+cWh4TE4MQog4xbGlpycvLEwqF1E48/Yx1TP3973+/fv36d999JxAIOqyQnp7u4+NDLSEIAv/oadasWbgkMDDw1VdfPXHiBDmotL29/euvv3Z3d6f2UKE/TvPxZgRsuxlbU1Pj6ek5YsSI06dPq1Squrq6vXv3WltbU28h6t4YDA8Pt7CwoLYTGBgoEomoJXgEiL+/f1FRUYcjQAwu+s6dO4MGDSLHvVy/fj08PBxfDZBLYVKnw1XQLVm7di2i3MmktXz16tWZM2cOGzbMvDdj9QRM/DHSKSQkRM+oG9xf8emnn2o0mjt37sydO9fNzY12M3bmzJkSieTBgweFhYU8Hu/GjRu4vC+PutFqtYMHD9a9h0y7GUt15MgRhFBno27UajU56mbfvn1kHYNfBJNjav78+Qihu3fvdrY6Bw8e7CwFkdt///79CKHly5ffvn27qampvLwcN0sddUMQhFwut7KymjdvXnV1dW1tbVJSEo/HO3v2LG2JeFxmVlZWZyH1XD+6Gcu2RE8QBB44PGLECD6f7+joGBYWdu7cOTxJLpdT97CNGzdSzxYRQv/4xz/+53/+h1qyZcuWnTt34v+7ubn95z//CQoKsrGxEQqFgYGBBQUFDBeN3bp164033rC1tcUj2HJzc8nrzSVLljCpg2+vkebPn6+7UsTLfR2RkZG0lq2trV9//fVffvll+vTp+GXZDHUj0fckYJlM5ubmduPGjfDwcLFY3OE2V6lUiYmJLi4uQqHQ39+/uLiYPCtcu3YtrlNeXh4QECASidzd3anjWAICAvrsqBuCIDZs2MDj8R4/fow/KpVK6lbqcNDLsmXLaH/kamtrU1JSPDw8+Hy+RCIJDw/Py8vDk5h/EQZ37ODgYBsbGz2jaGin21Rkom9ubv7mm29iYmI8PT1xv9P06dOPHj2q29rly5cjIiJsbW1tbGyCg4NpuwSGbwa8ePGis5B6DhK9kfWjDdq/jBkzZujQoczrdyPR9wRO9L22uK4ydaJXqVRubm5JSUmmW4RRPHv2TCgU6g6KN6OSkhIOh0MdV2oK/Sgvsa2PHnRGoVAMGjSIOorj3r17lZWVwcHBZowK6CGRSHJyck6cOLFnzx5zx9IpgiCSk5NtbW1TU1PNHcv/unv3bmxs7Pr16+fNm2fuWPoKSPQDyLNnz5KSkh4+fPj8+fP//Oc/CQkJtra28DTXvmzChAkXL148c+aMWq02dywdq6mpuXv3bl5eHsNhPL0gLS1t27Zt27ZtM3cgfQgk+oHC2dn5p59+UqlU06ZNs7Ozmz179qhRo/7zn/+MGDHC3KF1AD+jprS09PHjxxwOZ9OmTeaOyGyGDx+em5tL/dlHn+Ls7FxQUIB/W95HbN++Hc7lafrHA56AUYSEhOh/z0nfsXr16tWrV5s7CgBYAs7oAQCA5SDRAwAAy0GiBwAAloNEDwAALNdvbsYWFRXhJ6oD89q9ezd+NxDAD6KB3XLAKioqmjJlirmjYATO6AEAgOX6zRn9lClT4ETS7Dgczrvvvjt37lxzB9InHD9+PCEhAXbLAasfXczBGT0AALAcJHoAAGA5SPQAAMBykOgBAIDlWJXobWxsOHpdvHix243jx2xxOJwhQ4YYMeavv/4aN4tfBt3tOqDvu3///uzZs9VqdW1tLblPTpgwgXwrHkadyuFwJk6caK6AO/Ts2bO9e/cGBwcPGjRIKBSOGjVq/vz51FdsYv7+/roHYEpKCq1aSUlJZGSkVCoVi8WhoaG0FxYy19raunv3bh8fH7FYPHjw4IiIiJycHOLl96iQZs+ezeFwtm7dSi1ct24dfsEAK7Eq0Tc0NFy5cgUhFB0drfvofep77rth9erVBEHIZDIjBfu/5s2bRxCE/meNdVinoaFh1KhRUVFRxo0HmEhJScnEiRPDwsJsbW0dHBwIgsBvNyspKaGlPzxVLpfjd0X15OzEFNasWbNixYro6OgbN27U1dUdOHCgpKTEx8cnOzu7q0399ttvr7/+ulgsvnnz5u+//z5ixIjp06f/+OOPXW2nsbExODj40KFDu3fvfvLkycWLF21sbGbPnn39+nXdyl999VVOTo5u+dKlS9evX8/Wp3azKtEPKARBaLVarVZr7kBMxcbGxt/fv/+2T6VWq2fNmjVnzhz8hluSQCCwt7dPS0s7duxY70RiFG+//fY777zj7OxsbW0dEBBw9OjR9vb2v/3tb7RqxcXFtJOtjz76iJyq1WqXLFkilUoPHjzo4uLi4ODwxRdfeHp6JiYmtrS0dCmeNWvWlJWV/fjjj9OmTRMKhUOHDj106FCHryCvqqpKSUlZuHCh7iRPT8+srKxt27bh15GzzABK9CqVqq9dBfeEWCyurKw8ffq0uQMBhu3YsUOhUGzevJlWbmVllZGRweVyk5KSKioqzBJbV6Wnp6elpVFLZDKZUCisrKzsrKukQ7/++uv169fj4uKEQiEusbCwePPNNx8+fJibm8u8nZqamn379s2fP9/JyYksFIlEzc3N48aNo1VeunRpfHx8WFhYh03JZLK4uLhVq1a1tbUxD6BfGBCJ3t/f/9ChQ+aOAgxQBEGkp6f7+vq6urrqTg0PD9+0aZNGo4mPj6d11vcXjY2NTU1N48aN43A4zOf6+eefEUK0cy/8MS8vj3k733//fXt7O5OLswMHDly/fn3Xrl166sTExDx69OjUqVPMA+gXBkSip8nOzibvDt2/fz8hIUEsFtvb2y9cuPDZs2f37t2bNWuWWCx2cXFZunSpRqPRbaG8vDwyMlIikVhbWwcFBdHuICmVyuTk5OHDh1taWjo6OsbGxpaUlNBmf+ONNyQSiUgkCggIKCgo6HAReupQVwFnB2rJvXv3EhISpFKpvb19VFRUZWVlhy1bW1tPnjw5Nzc3NDQUz5iYmNjtrUpVV1e3cuVKT09PS0tLOzu7iIiI8+fP40lbt27FyyKPzLNnz+ISBwcHXILvezc2Nl64cAFP4vF46OX74cXFxSEhIWKxmPYV9KR9EyktLa2pqdFzd2fLli1hYWFlZWUrVqzQ046ercr82ze4c3YD/m3wxo0baeWHDx/29vYWiUQSiQT38FCnlpeXI4RoQxvc3NwQQl26uLl8+TJCyM7ObtWqVe7u7paWlsOGDUtOTn769Cm12qNHj1atWnXgwAGxWKynNW9vb4TQDz/8wDyA/sF07x03IuZvW8c3Y3UdPHiQVjM6OhohFBsbe/HixYaGhq+++gohFBERER0dfeXKFY1Gs3fvXoTQu+++S51LJpNJJJKgoKCCggKNRlNcXDx+/HhLS8v8/HxcoaqqatiwYU5OTqdOndJoNNeuXQsMDLSysiosLMQVbt++LZVK3dzcfvzxR41GU1ZWFhYWNnz4cIFAQC6FSR1yFZqammgl0dHRhYWFDQ0N586dEwqFkyZN6qzla9euhYaGOjo60lruDEIoMzNTf53q6moPDw8nJ6ecnJz6+vpbt27FxsZyOJz9+/eTdUQi0dSpU6lz+fj44HuPeupgMplMJBL5+fnhddT9CnrYflBQ0KBBg+Ryuf7VJAgCD9IwWO3w4cMIoQ8++IBWXlxcLJFI8P+VSqW7uztC6MiRI7iEvBmLMdmqBr99gztnNygUCicnp8TERFr51KlTFy5ceOnSpYaGhvLyctwtvmLFCrLCjBkzEEJFRUXUuW7fvo0Qeu2115gHgNfa2dl5/vz5lZWVz549+/LLL0Ui0ejRo1UqFVktPDx8+fLl+P/4G0lNTdVtrb6+HiEUEBDAZNHM85LZsTPR00bdTJ06tbNEf+rUKbIEv/fyl19+IUs8PDzGjBlDnQufl1GzQFlZGUJIJpPhj4sWLUIIZWRkkBWqq6sFAoGPjw/+iJ+PceLECbLC48ePBQIBNdUyqUN0nujxwDIsLi4OIaRUKjtr+cmTJ9bW1kZM9IsXL0YIHTt2jCxpbm52dXUVCoUKhQKX9DDRI4SuXLlCltC+gh62HxgYaGdnxyT3MUz0O3bsQAjt2bOHVk5N9ARByOVyPp8vEolu3rxJ6CR6JlvV4LdvcOfsqtraWm9v74SEhLa2NoOVJ0+eTM3sHSZ6fC7fpXjCw8MRQh4eHq2trWQhHjr53nvv4Y/79u0bMWJEQ0MD/qgn0RMEweFwRo4cyWTR/SjRD8SuGypqFyHuQqWWuLm5VVVV0WaxsrLy9fUlP3p5ebm6upaWllZXVyOEsrOzuVwuddSjs7Pz2LFjL126hJ9qe/bsWYQQ3jvJ5Y4ePZq6CCZ19Jg0aRL5f3yeSK6FbsuOjo6vvPIKw5aZyMrKQghFRkaSJQKBICQkpKmpyVhXxCKRCF9iY7SvoIfy8/OfPn3q5+fX86Yw3LfG5/P1V5syZcquXbsaGxvj4+ObmppoU5lvVT3fvsGds0saGxvDw8NfffXVjIwMCwsLg/XxXx1yaKNUKsWN0NokJzEkEokQQqGhodT+t1mzZqE/emAePHiwZs2aAwcO4JoG8Xg83e3f3w2IRF9QUIBPiHTZ2tqS/+dyuRYWFtbW1mSJhYWF7vhFe3t72k2nwYMHI4SePHnS0tJSX1+v1WolEgn1dyK4G/H27dstLS0ajcbKysrGxka3BYxJHf2ovxiwtLRECOG16KxlOzs7hi0bhLeAlZUVrScUj4hQKBRGWYpuIiC/AqO0b1z4Z26tra0GayYnJyckJFy7do02CrNLW1XPt69/5+zSSrW1tcXHx7u5uX355ZdMsjxCyMXFBVG+I3x6QfsD8/jxY4QQ83MahND/Z+/e45q40saBn0AuhBACotxiFFDB11tk0VIrlJsl4gWEBdGi1a1aXrWytmitVVvfqu2rS9fu27WryFLvVUs/0uKFatlafwi28QIoCgq0KpcgQUIACXKZ3x9nOzudhDBBSHB4vn+RMydnnplMHibnnJnx8PBACDk5OVEL8fFQV1eHEMKdXcHBweQm436kLVu24JdlZWW0TSMnArHGoEj0fQv34lHhY9fZ2VkgEDg4OHC5XOqvSFJISIhAIBCLxTqdrrm5mdoCdeCISZ3e6a7lPsyPAoFAIpHodDraIHZtbS1CyNXVFb+0srJ6+vQptYJGo6E1ZWQKR319PfH7mXzkR9An7fctnOD0DxuD0tLSfHx80tPTcfcCxnCvGtfjwWnCJiGUmJjY1tZ28uRJ8jx69OjRV65cMfIW/MOC/IzwGq9du0atg18av36QBo+6037M4eMB/yNcvXo1bWNpXTejR48m36jVagmCwB8ZmwyiRD9lypTjx48/ezvNzc3UC75v3rxZXV0tl8vxwRETE9PR0UGbh7Nz584RI0bgybkRERHoty4UTK1Wl5aWUuszqdM7+i2rVKq+ncEdHR2NEKJOUGtra8vJyREKhWSXkZubGz53I2N48OABrR1bW1syWfv4+KSmppKLdDodvqwUo30Ez95+38KzuRn2jdjZ2X399dcikejzzz+nljPZqz3q8eBkaOvWrcXFxd98843Bi5IQQmlpaX5+ftQSgiDwhUi4UwUhFBQUNG7cuIyMDHJSaWdn5/Hjx2UyGbWHqkezZs2SSqXZ2dnUyam4g2jevHnM28HwYaM/Af+517dd/v3kGQdjMT8/P+pYlv5IpkKhsLa2pr4lKChIJBJRS/CUj4CAgCtXrhic8lFbWztq1CgvL6+zZ89qNJr6+vq9e/fa2tqSY5hlZWVDhgwh570UFxcrFAr8a4BcC5M6BjdBv2TDhg2IMnRJa/nmzZszZ84cOXJkP8260Wq15PyQ1NRUsg7umvjss8+amprKysrmz58vlUppg6UzZ86USCQPHjzIy8vjcrm3b98mPwKJRBIWFmZk1s2ztN/ns266urqcnZ31B35pg7FUR44cQQh1N+umu73a46ff48FJEERCQgJCqKKiorvN+eKLL7pLJuRO279/P0Jo1apV9+7da21tLSkpwc1SZ90QBJGfn29jY7NgwYKamhq1Wp2YmMjlcrOzs6l1eoyHIIhz585xudyoqKi7d+82NDQcOnRIJBL5+/s/efLEYH0jg7F4DuipU6eMrI70HA3GsirR9zjYghN9fn4+tXDTpk3U00OE0Mcff/z//t//o5Z88MEHf/nLX/DfUqn0559/DgkJsbOzEwqFQUFBubm51DDwfGcvLy8ejzds2LDw8PALFy5QK5SWls6bN8/e3h7Pfjt9+jT5W3XZsmVM6uChOVJCQoL+RhG/79yYPXs2rWVbW9uXXnrpxx9/DA4OtrW1ZfJBIAaJniAItVq9du1aT09PHo8nkUgUCkVOTg61gkajWb58uZubm1AoDAgIUCqV5Anghg0bcJ2SkpLAwECRSCSTyahTVuRyuVQqvX37tkKhEIvFBj+CZ2k/MDCwb2fdEATx3nvvcbncqqoq/BL3HZMMTjJZuXIl7T+Tkb3K/NPv8eAMDQ21s7MzMovGyOk2meh1Ot1XX30VHR09atQo3O8UHBx87Ngx/dauX78eERFhb29vZ2cXGhpK+xyZxIPl5eUpFAqJRMLn88eOHbt161aDWT4xMZEWs0KhoFbAAw9Pnz41vjoMEn0fe4526PPIx8dnxIgRTGoyTPT9Cid6y8aAMU/0Go1GKpUmJib2d0jPqKGhQSgU6k+KtxQzx1NQUMDhcKi/+417jvLSIOqjBwghlUo1ZMgQ6gyQX3/9tby8PDQ01IJRsZ5EIsnKysrIyNizZ4+lY+kWQRBJSUn29vbbtm2zdCwImT2eioqKmJiYjRs3LliwwAyrMzNI9INOQ0NDYmLiw4cPnzx58vPPP8fHx9vb27P17qwDh6+v79WrV8+dO6fVai0di2G1tbUVFRU5OTkMp/H0NzPHs2/fvh07duzYscMM6zI/SPSDi6ur6/fff6/RaF5++WVHR8fIyMgxY8b8/PPPXl5elg6tZ/geNYWFhVVVVRwOZ/PmzZaOyDQeHh6nT5+mXroxoLi6uubm5uLrwwcCM8ezc+dOVp7LY/14LycwMIWFhZk0T3ngWLdu3bp16ywdBQDPHzijBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDtLX7HFCL6TNQAADCjPy5WxHMKUB7dbSn5+/sOHDy0dBWCD3bt3I4TeeustSwcC2EAmk/XhM2r6z/OR6AHoK/Pnz0cI4VvmAjBIQB89AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMtBogcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWI5r6QAA6F9qtVqr1ZIvW1paEEIVFRVkib29/dChQy0QGQDmwiEIwtIxANCPvvjii9dff91IhfT09D/96U9miwcA84NED1iusbFx2LBh7e3tBpfyeLy6ujqJRGLmqAAwJ+ijBywnkUhmzZrF5RropeRyubNnz4YsD1gPEj1gv0WLFnV2duqXd3V1LVq0yPzxAGBm0HUD2E+n0w0dOhQPw1LZ2tqq1WqhUGiRqAAwGzijB+xnY2MTExPD4/GohTweLzY2FrI8GAwg0YNB4dVXX6WNx7a3t7/66quWigcAc4KuGzAodHR0uLi4PH78mCxxcHCoq6szOEgLAMvAGT0YFLhc7sKFC8neGx6Pt2jRIsjyYJCARA8Gi4ULF5K9N+3t7QsXLrRsPACYDXTdgMGCIAiZTFZVVYUQcnNzq6qq4nA4lg4KAHOAM3owWHA4nMWLF/P5fD6fv2TJEsjyYPCAM3owiBQVFcnlcvzHxIkTLR0OAGbCwsGo/Pz8v/71r5aOAgxQdnZ2CKEPP/zQ0oGAAertt9+eNm2apaPoYyzsunn48GFGRoalo3g+VFZWDrZ9NXLkSA8Pj+6WXrly5cqVK2YMBwwsGRkZDx8+tHQUfY+FZ/TYV199ZekQngMnT56Mj48fVPsK34ney8vL4NK4uDgEB88gxtaRG9YmegAM6i7FA8BiLOy6AQAAQAWJHgAAWA4SPQAAsBwk+v84fvw4h8PhcDg2NjaWjgU8H+7fvx8ZGanVatVqNec3vr6+Op2OWo26lMPhTJkyxVIBG9TQ0LB3797Q0NAhQ4YIhcIxY8YkJCQUFhbSqgUEBHD0rF27llatoKBg9uzZDg4OYrF4xowZly9f7l1U7e3tu3fv9vPzE4vFzs7OERERWVlZ3V33ExkZyeFwtm/fTi189913T5w40bu1swwk+v9YsGABQRBhYWGWDuQ50NzcPGbMmDlz5lg6EEsqKCiYMmVKeHi4vb390KFDCYJQKpW4nJb+8NL8/HwnJyeCIK5evWqhkA1bv379mjVroqKibt++XV9fn56eXlBQ4Ofnl5mZaWpTP/3000svvSQWi+/cufPLL794eXkFBwefP3/e1HZaWlpCQ0MPHDiwe/fuR48eXb161c7OLjIysri4WL/yoUOHsrKy9MtXrFixcePGLVu2mLp2FiJYB/8P7/Xbw8LCBAJBH8ZjHiKRaPr06aa+q9f7SqvVenl5RURE9OK9faJ329uj2NjY2NhYJjUbGxuHDx+emJhILVQqlQKBwMnJCSF07Ngx2lvIRD/QLFu27I033qCWFBQUIITGjBlDLZw+fbpSqTTSTmdn5/jx493c3J48eYJLOjo6fHx8ZDKZTqczKaSVK1fa29urVCqypLm5WSAQ3Lx5k1azqqrK0dFx8eLFCKFt27bRlhYUFHA4nBMnTjBcL0KIeeXnCJzRg94Qi8Xl5eVnz561dCAWs2vXLpVK9f7779PKbWxsjh49amVllZiYePfuXYvEZqq0tLR9+/ZRS+RyuVAoLC8vJ0y5RcqlS5eKi4upz+2ytrZeuHDhw4cPT58+zbyd2tra1NTUhIQEFxcXslAkEul0ugkTJtAqr1ixIi4uLjw83GBTcrk8NjY2OTm5o6ODeQDsA4keAJMRBJGWlubv7+/u7q6/VKFQbN68uampKS4ujtZZ/7xoaWlpbW2dMGGCSRcQ/etf/0II0UYg8MucnBzm7Xz77bednZ0BAQE91kxPTy8uLk5JSTFSJzo6urKy8syZM8wDYJ/BnuhLSkrmzZsnkUhEIlFgYGBubi51aWZmJjnoVFpaOn/+fCcnJ/xSrVYjhOrr699+++1Ro0bx+XxHR8eIiIgffvgBvzclJQXXHD58uFKpDAsLE4vFtra2ISEhtOEpI41s374dN0Ie9NnZ2bhk6NCh1BW1tLRcvnwZL+rv52lQdwtOZNSSX3/9NT4+3sHBwcnJac6cOeXl5cx3yMDcXn2FhYW1tbX4/mgGffDBB+Hh4UVFRWvWrDHSjpGPnskuxerq6pKSkjw8PPh8/rBhw2JiYnDHy7PA1wZv2rSJVn748OHJkyeLRCKJRBIYGHjs2DHq0pKSEoTQ8OHDqYVSqRQhZNKPm+vXryOEHB0dk5OTZTIZn88fOXJkUlIS9QFhCKHKysrk5OT09HSxWGyktcmTJyOEvvvuO+YBsJCl+476HvN+53v37jk4OEil0vPnzzc1NRUVFYWHh3t4eND66KOiohBCQUFBP/zwQ0tLy5UrV6ytrevq6mpqajw9PV1cXLKyshobG0tLS2NiYjgczv79+8n3yuVykUg0bdq0vLy85uZmpVI5adIkPp9/8eJFXIFJI/r90X5+frTeXjP30RO/7ZbW1lZaSVRUFN7YCxcuCIXCqVOnUt/V4w4xuC3MtzckJGTIkCH5+fm92yiGffSHDx9GCH300Ue0cqVSKZFI8N91dXUymQwhdOTIEVxC66Nn8tH3uEurq6tHjhzp4uJy5syZpqamW7duBQUF2djY5OXl9W4PEAShUqlcXFyWL19OK58+ffrixYuvXbvW3NxcUlKCu8XXrFlDVnjllVcQQleuXKG+6969ewihP/zhD8wDwFvt6uqakJBQXl7e0NBw8OBBkUjk7e2t0WjIagqFYtWqVfhv/Ino99ETBNHY2IgQCgwMZLJqxNI++kGd6PGNTTIyMsiSqqoqgUBgMNGfPXuW9valS5cihL788kuyRKfTubu7C4VCchAJn/TduHGDrFNUVIQQksvlzBt5vhI9ngOHxcbGIoTq6urIkh53CPFs2xsUFOTo6NjrNMcw0e/atQshtGfPHlo5NdETBJGfn8/j8UQi0Z07dwi9RM/ko+9xly5ZsgQhdPToUbJCTU2NQCDw8/NjvtVUarV68uTJ8fHxHR0dPVZ+4YVwmMVHAAAgAElEQVQXqJndYKLH5/ImxaNQKBBCnp6e7e3tZCGeOrllyxb8MjU11cvLq7m5Gb80kugJguBwOKNHj2ayarYm+kHddZOdnY0QwkcV5u7u7u3tbbAyPqapTp06hRCaPXs2WSIQCMLCwlpbW6m/E0UiEf7xiE2cONHd3b2wsLCmpoZ5I8+RqVOnkn/jU9rq6mpqBeM75BldvHjx8ePH/X2bWdxhRT6BtjsvvvhiSkpKS0tLXFxca2srbSnzj97ILs3MzLSysqLOc3V1dR0/fvy1a9cqKytN3a6WlhaFQjFu3LijR49aW1v3WB//1yGnNjo4OOBGaG2SixgSiUQIoRkzZlA75ebOnYt+64F58ODB+vXr09PTcc0ecblc/f0/qAzeRN/W1tbU1GRjY4NvUE5ydnY2WJ92SLW1tTU2NtrY2ND6B/E8AZVKRZboH+J4FY8ePWLeyHNEIpGQf/P5fIRQV1cXtYKRHdL/0fUNfEkd+QRaI5KSkuLj42/duvXmm29Sy0366LvbpbiRrq4uiURCvYgJ93HjPhPmOjo64uLipFLpwYMHmWR5hJCbmxuifHBjx45FCNH+weBnN3Z3/mQQvo80nqVKwgdJXV0dQgh3dgUHB5ObjPuRtmzZgl+WlZXRNo2cCDQ4Dd5ELxAIxGKxTqdrbm6mltMGfIy8XSKR6HS6pqYmanltbS1CyNXVlSypr68nfj9HDX8xnJ2dGTZiZWX19OlTagWNRkOLx6TZEZZlZIfglwN/e3GCw52/PUpLS/Px8UlPT8fdCxjz48cIgUDg4ODA5XKpXRykkJAQEzYJocTExLa2tpMnT5Ln0aNHjzZ+d378w4L84PAar127Rq2DX5p0HSIeiqf9wsMHCf5HuHr1atrG0rpuRo8eTb5Rq9USBIE/skFr8CZ6hFBERAT6rQMHU6vVpaWlDN8eHR2NEKJO22pra8vJyREKhdTuIJ1Ohy+YxG7evFldXS2Xy/GRx6QR/CRrsoJKpXrw4AEtGFtbWzI5+vj4pKamMtwK8zO+Q9DzsL14NjfDvhE7O7uvv/5aJBJ9/vnn1HKGx49xMTExHR0dtHlcO3fuHDFihEkzx7du3VpcXPzNN98IBAKDFdLS0vz8/KglBEGcPHkS/dapghAKCgoaN25cRkYGOam0s7Pz+PHjMpmM2kPVo1mzZkml0uzsbOrkVNxBNG/ePObtYPhY0p+AP7j06wiARTAfYCwrKxsyZAg566a4uFihUOATbWo1/VFHjDprQqvVkrMmUlNTyTpyuVwikYSFhTGZddNdI/hX/2effdbU1FRWVjZ//nypVEobnJw5c6ZEInnw4EFeXh6Xy719+3bf7it93Q3GUks2bNiAfj/02uMOecbtNc+sm66uLmdnZ/3RYNpgLNWRI0cQQt3Nuunuo+9xl9bW1o4aNcrLy+vs2bMajaa+vn7v3r22trbUEcWEhASEUEVFRXeb88UXX3SXH8g9uX//foTQqlWr7t2719raWlJSgpulzrohCCI/P9/GxmbBggU1NTVqtToxMZHL5WZnZ1Pr9BgPQRDnzp3jcrlRUVF3795taGg4dOiQSCTy9/cnr7mlMTIYi+eAnjp1ysjqSIilg7GDOtETBFFaWjpv3jx7e3s8a+306dPkb8xly5bl5+cb/7+oVqvXrl3r6enJ4/EkEolCocjJyaFWkMvlUqn09u3bCoVCLBYLhcKgoKDc3FyTGtFoNMuXL3dzcxMKhQEBAUqlkjy32rBhA65TUlISGBgoEolkMpn+bJA+2VckPIpISkhIoO2oTZs2Eb/vnJk9ezbzHfIs2xsYGGiGWTcEQbz33ntcLreqqgq/xH3HJIOTTFauXEn7d2Xko2e+S/FkfC8vLx6PN2zYsPDw8AsXLlDXEhoaamdnZ2QWjZHTbTLR63S6r776Kjo6etSoUbjfKTg4WP82DwRBXL9+PSIiwt7e3s7OLjQ0lPbhMokHy8vLUygUEomEz+ePHTt269atBrN8YmIiLWaFQkGtgAcenj59anx1GCT658Yz3uumb+G8ZukoumX+fTXAdwjzRK/RaKRSKe1eNwNQQ0ODUCjUnxRvKWaOB9/rhjqH1Ti2JvpB3UcPQK9JJJKsrKyMjIw9e/ZYOpZuEQSRlJRkb2+/bds2S8eCkNnjqaioiImJ2bhx44IFC8ywuoEMEj0AveTr63v16tVz585ptVpLx2JYbW1tRUVFTk4Ow2k8/c3M8ezbt2/Hjh07duwww7oGOEj0/QXfkqWwsLCqqorD4WzevNnSEVkYK3eIh4fH6dOn7e3tLR2IYa6urrm5uePHj7d0IP9m5nh27twJ5/KYue8GNXisW7du3bp1lo5iAIEdAoClwBk9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy7F21s1zdDdHi4N9RQM7BLAMaxM9vrgfGJefn//pp5/CviLt3r0bIfTWW29ZOhBgGfHx8ZYOoV+wNtHPnz/f0iE8Hz799FPYVyT8UGzYIYMWWxM99NEDAADLQaIHAACWg0QPAAAsB4keAABYbvAmejs7Ow6FlZWVo6OjXC5ftWoV7enGAHTn/v37kZGRWq1WrVaTx5Kvry/1YacIIepSDoczZcoUSwVsUENDw969e0NDQ4cMGSIUCseMGZOQkFBYWEirFhAQwNGzdu1aWrWCgoLZs2c7ODiIxeIZM2bQnmfLXHt7++7du/38/MRisbOzc0RERFZWFvH7x2yRIiMjORzO9u3bqYXvvvsuzCjDBm+ib25uvnHjBkIoKiqKIIj29vaSkpIPP/ywpKRkypQpf/rTn548eWLpGMGAVlBQMGXKlPDwcHt7+6FDhxIEgR96XlBQQEt/eGl+fj5+lODVq1ctFLJh69evX7NmTVRU1O3bt+vr69PT0wsKCvz8/DIzM01t6qeffnrppZfEYvGdO3d++eUXLy+v4ODg8+fPm9pOS0tLaGjogQMHdu/e/ejRo6tXr9rZ2UVGRhYXF+tXPnToEH50OM2KFSs2bty4ZcsWU9fOQhZ8ulU/Yf54PGqip3rnnXcQQpGRkV1dXf0QYD8SiUT6T6w2wsyPEjQ1PPO3z/xRgo2NjcOHD6c9SlCpVAoEAicnJ4SQ/vNUyUQ/0CxbtuyNN96glhQUFCCExowZQy2cPn26Uqk00k5nZ+f48ePd3NzIh7t2dHT4+PjIZDKdTmdSSCtXrrS3t1epVGRJc3OzQCC4efMmrWZVVZWjo+PixYuRoYeD40cJMn86IIJHCQ4e//u//+vv7//tt98eP37c0rGAAWrXrl0qler999+nldvY2Bw9etTKyioxMfHu3bsWic1UaWlp+/bto5bI5XKhUFheXk5001Vi0KVLl4qLi2NjY4VCIS6xtrZeuHDhw4cPT58+zbyd2tra1NTUhIQEFxcXslAkEul0ugkTJtAqr1ixIi4uLjw83GBTcrk8NjY2OTm5o6ODeQDsA4neAA6H8+abbyKEPv/8c0vHAgYigiDS0tL8/f3d3d31lyoUis2bNzc1NcXFxdE6658XLS0tra2tEyZMMOluEP/6178QQrQRCPwyJyeHeTvffvttZ2dnQEBAjzXT09OLi4tTUlKM1ImOjq6srDxz5gzzANgHEr1h+CC7cuVKe3t7ZmYmOfRUWlo6f/58Jycn/FKtViOE6uvr33777VGjRvH5fEdHx4iIiB9++AG3g5+fx+Fwhg8frlQqw8LCxGKxra1tSEgIbZDKSCPbt2/HjZCHfnZ2Ni4ZOnQodUUtLS2XL1/Gi7jcvrzsuZ/CY7J/BsLm0xQWFtbW1srl8u4qfPDBB+Hh4UVFRWvWrDHSjpG9Sj3qfv311/j4eAcHBycnpzlz5pSXl1MbqaurS0pK8vDw4PP5w4YNi4mJwR0vzwJfIbxp0yZa+eHDhydPniwSiSQSSWBg4LFjx6hLS0pKEELDhw+nFkqlUoSQST9url+/jhBydHRMTk6WyWR8Pn/kyJFJSUmPHz+mVqusrExOTk5PTxeLxUZamzx5MkLou+++Yx4AC1m676jvPXsfPUEQra2teP9UV1fjkqioKIRQUFDQDz/80NLScuXKFWtr67q6upqaGk9PTxcXl6ysrMbGxtLS0piYGA6Hs3//frI1uVwuEommTZuWl5fX3NysVConTZrE5/MvXryIKzBpRL8D2s/Pj9bn20999P0dXo/75xnbDwkJGTJkSH5+fo9byrCP/vDhwwihjz76iFauVColEgn+u66uTiaTIYSOHDmCS2h99Ez2Kj7qoqKi8J65cOGCUCicOnUqWaG6unrkyJEuLi5nzpxpamq6detWUFCQjY1NXl5ej1vRHZVK5eLisnz5clr59OnTFy9efO3atebm5pKSEtwtvmbNGrLCK6+8ghC6cuUK9V337t1DCP3hD39gHgDealdX14SEhPLy8oaGhoMHD4pEIm9vb41GQ1ZTKBSrVq3Cf+NPRL+PniCIxsZGhFBgYCCTVSOW9tFDojec6MkpN7REf/bsWVrNpUuXIoS+/PJLskSn07m7uwuFQnIoCZ/63bhxg6xTVFSEEJLL5cwbsWCi7+/wetw/z9h+UFCQo6Mjk9zHMNHv2rULIbRnzx5aOTXREwSRn5/P4/FEItGdO3cIvUTPZK/iow5PKyQjRAjV1dXhl0uWLEEIHT16lKxQU1MjEAj8/Px63AqD1Gr15MmT4+PjOzo6eqz8wgsvUDO7wUSPz+VNikehUCCEPD0929vbyUI8dXLLli34ZWpqqpeXV3NzM35pJNETBMHhcEaPHs1k1WxN9NB1Y1hNTQ1CiMfjkZ0DGD6yqU6dOoUQmj17NlkiEAjCwsJaW1upvxZFIhH+CYlNnDjR3d29sLAQr4hhI5ZihvCM759ndPHixcePH0+bNu3Zm8JwzzuPxzNe7cUXX0xJSWlpaYmLiyN/I5KY79WpU6eSf+NfCdXV1fhlZmamlZXVnDlzyAqurq7jx4+/du1aZWWlqdvV0tKiUCjGjRt39OhRa2vrHuvj/zrk1EYHBwfcCK1NchFDIpEIITRjxgxq/9vcuXPRbz0wDx48WL9+fXp6Oq7ZIy6Xq7//BxVI9Ibl5uYihKZNm0b7MtMOrLa2tsbGRhsbG1ovIZ4toFKpyBL9A93Z2Rkh9OjRI+aNWIR5wjOyf/qk/b5lY2ODEGpvb++xZlJSUnx8/K1bt/DwPsmkvSqRSMi/+Xw+Qqirq4tspKurSyKRUC9iwn3cuM+EuY6Ojri4OKlUevDgQSZZHiHk5uaGKJ/R2LFjEUK0fzBVVVUIIW9vb+aReHh4IITwLFUSPh7q6uoQQrizKzg4mNxk3I+0ZcsW/LKsrIy2aeREoMEJEr0BXV1de/bsQQitXr3aeE2BQCCRSHQ6XVNTE7W8trYWIeTq6kqW1NfXE7+fqYa/Hs7OzgwbsbKyevr0KbWCRqOhxWPSHAmGzBOekf3TJ+33LZzgcOdvj9LS0nx8fNLT03H3Asb8yDFCIBA4ODhwuVxqFwcpJCTEhE1CKDExsa2t7eTJk+R59OjRo69cuWLkLfiHBfkZ4TXSLizHL8PCwphHgkfdaT/m8PGA/xGuXr2atrG0rpvRo0eTb9RqtQRB4I9s0IJEb8DGjRt//vnn6OjouLi4HitHR0cjhKiTt9ra2nJycoRCIe5qxHQ6Hb5sErt582Z1dbVcLsfHH5NG3Nzc8MkRplKpHjx4QAvG1taWzIY+Pj6pqalMt/mZt/EZwzO+f569/b6FZ3Mz7Buxs7P7+uuvRSIRbbYuwyPHuJiYmI6ODtoMrp07d44YMcKkmeNbt24tLi7+5ptvBAKBwQppaWl+fn7UEoIgTp48iX7rVEEIBQUFjRs3LiMjg5xU2tnZefz4cZlMRu2h6tGsWbOkUml2djZ1ciruIJo3bx7zdjB82OhPwB9c+nUEwCJ6Nxjb2dlZW1ubmZkZGhqKEHr99dfJq/swPCzW2tpKa4Q6d0Kr1ZJzJ1JTU8k6crlcIpGEhYUxmXXTXSP4t/9nn33W1NRUVlY2f/58qVRKG42cOXOmRCJ58OBBXl4el8u9fft2n+yr/g6vx/3zjO33+aybrq4uZ2dn/YFf2mAs1ZEjRxBC3c266W6v6h91GzZsQJSB69ra2lGjRnl5eZ09e1aj0dTX1+/du9fW1pY6opiQkIAQqqio6G5zvvjii+7yA7nT9u/fjxBatWrVvXv3WltbS0pKcLPUWTcEQeTn59vY2CxYsKCmpkatVicmJnK53OzsbGqdHuMhCOLcuXNcLjcqKuru3bsNDQ2HDh0SiUT+/v60byXJyGAsngN66tQpI6sjIZYOxg7eRE/rbedwOBKJZOLEiStXrrx27Rq1Zn5+vvH/jmq1eu3atZ6enjweTyKRKBSKnJwcagW5XC6VSm/fvq1QKMRisVAoDAoKys3NNakRjUazfPlyNzc3oVAYEBCgVCrJM6wNGzbgOiUlJYGBgSKRSCaT6c8J6fW+6u/wmOyfZ2k/MDCwb2fdEATx3nvvcbncqqoq/BL3HZMMTjJZuXIl7T+Tkb1KO+o2bdpE/L5ra/bs2bgmnozv5eXF4/GGDRsWHh5+4cIF6lpCQ0Pt7OyMzKIxcrpNJnqdTvfVV19FR0ePGjUK9zsFBwfr3+aBIIjr169HRETY29vb2dmFhobSPkcm8WB5eXkKhUIikfD5/LFjx27dutVglk9MTKTFrFAoqBXwwMPTp0+Nrw6DRP/cMPP9W5jAiczSURgwQPbVwNk/zBO9RqORSqW0e90MQA0NDUKhUH9SvKWYOR58rxvqHFbj2JrooY8egN6QSCRZWVkZGRl43H5gIggiKSnJ3t5+27Ztlo4FIbPHU1FRERMTs3HjxgULFphhdQMZJHoAesnX1/fq1avnzp3TarWWjsWw2traioqKnJwchtN4+puZ49m3b9+OHTt27NhhhnUNcJDo+xe+B0thYWFVVRWHw9m8ebOlIxpYnvf94+Hhcfr0aXt7e0sHYpirq2tubu748eMtHci/mTmenTt3wrk81o83fgIIoXXr1q1bt87SUQxcsH8AMAM4owcAAJaDRA8AACwHiR4AAFgOEj0AALAcawdj8V04gHH48kvYVyR8+xrYIYBlWJvo4+PjLR3CcwP2FQ3sEMAyHMKUp7wD8LybP38+gnN2MMhAHz0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMtBogcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHNfSAQDQvy5dupSfn0++LCkpQQjt3LmTLJk2bdrLL79sgcgAMBcOQRCWjgGAfpSTkzNjxgwej2dlRf/92tXV1d7e/v3334eFhVkkNgDMAxI9YLmuri5XV9e6ujqDS4cOHapSqaytrc0cFQDmBH30gOWsrKwSEhL4fL7+Ij6fv2jRIsjygPUg0QP2W7hw4dOnT/XLnz59unDhQvPHA4CZQdcNGBQ8PDzu379PK5TJZPfv3+dwOBYJCQCzgTN6MCgsXryYx+NRS3g83tKlSyHLg8EAzujBoFBSUvJf//VftMJbt26NHz/eIvEAYE5wRg8GhbFjx44fP556/j5u3DjI8mCQgEQPBovXXnuNnGDD4/GWLFli2XgAMBvougGDxcOHD0eOHIkPeA6HU1FR4eHhYemgADAHOKMHg4VMJvP397eysrKysvL394csDwYPSPRgEFm8eDGHw7Gyslq8eLGlYwHAfKDrBgwiarXa1dUVIVRdXe3s7GzpcAAwE9YmepgfDQAwFVvzIZtvU7x27dpp06ZZOoqBa/fu3Qiht956y9KBmNWlS5c4HE5gYKD+ovj4eDhmBq38/PxPP/3U0lH0Fzaf0Z84cWL+/PmWDmTgiouLQwh99dVXlg7ErJqamhBCYrFYfxEcM4PZyZMn4+Pj2ZoP2XxGD4A+gykeAHaDWTcAAMBykOgBAIDlINEDAADLQaIfiM6ePevt7c3l9jyCcvz4cQ6Hw+FwbGxszBAYIN2/fz8yMlKr1arVas5vfH19dTodtRp1KYfDmTJliqUCNqihoWHv3r2hoaFDhgwRCoVjxoxJSEgoLCykVQsICODoWbt2La1aQUHB7NmzHRwcxGLxjBkzLl++3Luo2tvbd+/e7efnJxaLnZ2dIyIisrKyuhsmjYyM5HA427dvpxa+++67J06c6N3aWQkS/cBSXl4eGRm5cePG2tpaJvUXLFhAEISZn23d3Nw8ZsyYOXPmmHOlA0pBQcGUKVPCw8Pt7e2HDh1KEIRSqcTltPSHl+bn5zs5OREEcfXqVQuFbNj69evXrFkTFRV1+/bt+vr69PT0goICPz+/zMxMU5v66aefXnrpJbFYfOfOnV9++cXLyys4OPj8+fOmttPS0hIaGnrgwIHdu3c/evTo6tWrdnZ2kZGRxcXF+pUPHTqUlZWlX75ixYqNGzdu2bLF1LWzFsFSCKETJ05YOgqTLVy48OOPP25vb5dKpdbW1gzfFRYWJhAITF1XbGxsbGysqe8iCEKr1Xp5eUVERPTivX1CJBJNnz69z5tleMw0NjYOHz48MTGRWqhUKgUCgZOTE0Lo2LFjtLeQiX6gWbZs2RtvvEEtKSgoQAiNGTOGWjh9+nSlUmmknc7OzvHjx7u5uT158gSXdHR0+Pj4yGQynU5nUkgrV660t7dXqVRkSXNzs0AguHnzJq1mVVWVo6MjvpvFtm3baEsLCgrwfFmG68W/AEwK9TkCZ/QDyz//+c93332XSaeNBYnF4vLy8rNnz1o6EMvYtWuXSqV6//33aeU2NjZHjx61srJKTEy8e/euRWIzVVpa2r59+6glcrlcKBSWl5cTpswov3TpUnFxcWxsrFAoxCXW1tYLFy58+PDh6dOnmbdTW1ubmpqakJDg4uJCFopEIp1ON2HCBFrlFStWxMXFhYeHG2xKLpfHxsYmJyd3dHQwD4CtINEPLOT3BAxMBEGkpaX5+/u7u7vrL1UoFJs3b25qaoqLi6N11j8vWlpaWltbJ0yYYNJNRP71r38hhGgjEPhlTk4O83a+/fbbzs7OgICAHmump6cXFxenpKQYqRMdHV1ZWXnmzBnmAbAVJPr/qK+vf/vtt0eNGiUQCIYPHz5jxowDBw60trbSlvL5fEdHx4iIiB9++AEvyszMJEeofv311/j4eAcHBycnpzlz5pSXlyOENBoNdRQLDxx1dHSQJbGxsczjLCkpmTdvnkQiEYlEgYGBubm5fb0njKFuLM5lPW4+QiglJQVXGD58uFKpDAsLE4vFtra2ISEh5JDd9u3bcR3ye56dnY1Lhg4dSm2npaXl8uXLeJGZf/0UFhbW1tbK5fLuKnzwwQfh4eFFRUVr1qwx0s6zHE6kurq6pKQkDw8PPp8/bNiwmJgY3PHyLPCV0ps2baKVHz58ePLkySKRSCKRBAYGHjt2jLq0pKQEITR8+HBqoVQqRQiZ9OPm+vXrCCFHR8fk5GSZTMbn80eOHJmUlPT48WNqtcrKyuTk5PT0dOOXv02ePBkh9N133zEPgLUs3XfUX5CJffQ1NTWenp6urq5ZWVlarValUm3btg0htHv3bnKpi4tLVlZWY2NjaWlpTEwMh8PZv38/2UJUVBRCKCoqKi8vr7m5+cKFC0KhcOrUqWSFmTNnWllZlZWVUdc7bdo0/S5dgiC666O/d++eg4ODVCo9f/58U1NTUVFReHi4h4eHOfvoid82trW1lVZiZPMJgpDL5SKRaNq0abiOUqmcNGkSn8+/ePEiWUe//93Pz4/Wwd1dH31ISMiQIUPy8/N7t1FMjpnDhw8jhD766CNauVKplEgk+O+6ujqZTIYQOnLkCC6h9dH3yeFUXV09cuRIFxeXM2fONDU13bp1KygoyMbGJi8vr3ebTxCESqVycXFZvnw5rXz69OmLFy++du1ac3NzSUkJ7hZfs2YNWeGVV15BCF25coX6rnv37iGE/vCHPzAPAG+1q6trQkJCeXl5Q0PDwYMHRSKRt7e3RqMhqykUilWrVuG/8Sei30dPEERjYyNCKDAwkMmq2d1Hz94NMzHRL126VP8tM2fOxIkeL/3yyy/JRTqdzt3dXSgUkqNG+BjF88AwfJ5eV1eHX37//fcIIfIAJQgiNzd3xIgR7e3t+vF0l+jxDWoyMjLIkqqqKoFAMEASvZHNJwgCnwjfuHGDLCkqKkIIyeVysuRZEn1QUJCjo2OvMx2TY2bXrl0IoT179tDKqYmeIIj8/HwejycSie7cuUPoJfo+OZzwoxCPHj1KVqipqREIBH5+fiZtNUmtVk+ePDk+Pr6jo6PHyi+88AI1sxtM9Phc3qR4FAoFQsjT05P6pcC/gLds2YJfpqamenl5NTc345dGEj1BEBwOZ/To0UxWze5ED103/3bq1CmEUEREBLXw3LlzeLYcXjp79mxykUAgCAsLa21tpf0wnDp1Kvk3Pq2rrq7GL8PCwnx9fQ8cOFBfX49L/vKXv6xdu9akzofs7GyEEP4+YO7u7t7e3sxb6FdGNh8TiUT4BzU2ceJEd3f3wsLCmpqaZ1/7xYsXHz9+3K+3n8S9VTwez3i1F198MSUlpaWlJS4ujuz9I/XJ4ZSZmWllZUWd5Orq6jp+/Phr165VVlaaul0tLS0KhWLcuHFHjx4ln6xrBP6vQ05tdHBwwI3Q2iQXMSQSiRBCM2bMoH4p5s6di37rgXnw4MH69evT09NxzR5xuVz9/T8IQaJHCKG2trbGxkYbGxuDXX7dLcUTA1QqFbVQIpGQf/P5fIRQV1cXWZKcnLy2NlYAACAASURBVPzkyZPPP/8cIXT37t1Lly4tX77cpDibmppsbGzs7Oyo5QPnGRrGNx8Z+trj4B89etT/0fUBfGFae3t7jzWTkpLi4+Nv3br15ptvUsv75HDCjXR1dUkkEurwD+7jxn0mzHV0dMTFxUml0oMHDzLJ8gghNzc3RPnUxo4dixCi/YOpqqpCCJl0FoKf74hnqZLwEVJXV4cQwp1dwcHB5CbjfqQtW7bgl2VlZbRNgwkOCBI9JhAIJBKJTqfD97BluBRf04SfWMRQfHy8TCb7+9//3tbW9sknn6xYscKkmykKBAKxWKzT6Zqbm6nltKGqgay+vp74/bw9nCzI/1VWVlZPnz6lVtBoNLRGTJoQ0rdwgsOdvz1KS0vz8fFJT0/H3QtYnxxOAoHAwcGBy+Ua7PcLCQkxYZMQSkxMbGtrO3nyJHkePXr06CtXrhh5C/5hQX5qeI3Xrl2j1sEvTbqaD4/D037e4SME/yNcvXo1bWNpXTejR48m36jVagmCwB/ZIAeJ/t+io6MRQrS54b6+vvi5HHgpdZ5WW1tbTk6OUCik9qL0iMvl/vnPf3706NEnn3xy/PjxpKQkU+PEnUu4AwdTq9WlpaWmtmMpOp0OX0SK3bx5s7q6Wi6Xk99GNzc3fCaIqVSqBw8e0BqxtbUl/xn4+Pikpqb2c9T/gWdzM+wbsbOz+/rrr0UiEf4NR+qTwykmJqajo4N2m4GdO3eOGDHCpJnjW7duLS4u/uabbwQCgcEKaWlpfn5+1BKCIE6ePIl+61RBCAUFBY0bNy4jI4OcVNrZ2Xn8+HGZTEbtoerRrFmzpFJpdnY2dXIq7iCaN28e83YwfCDpT8AfjPp3CMByUK9m3bi5uZ0+fVqr1T58+HDlypUuLi73798nfj9NQqvVktMkUlNTyRb0xyc3bNiAfj/2SBCEVqvFP7dfe+01I/F0NxhbVlY2ZMgQctZNcXGxQqFwdnYeIIOxxjdfLpdLJJKwsDAjs25wR8dnn33W1NRUVlY2f/58qVRKG4ydOXOmRCJ58OBBXl4el8u9ffs2LjfDrJuuri5nZ2f9oWDaYCzVkSNHEELdzbrp9eFUW1s7atQoLy+vs2fPajSa+vr6vXv32traUjchISEBIVRRUdHd5nzxxRfdZQZyN+7fvx8htGrVqnv37rW2tpaUlOBmqbNuCILIz8+3sbFZsGBBTU2NWq1OTEzkcrnZ2dnUOj3GQxDEuXPnuFxuVFTU3bt3GxoaDh06JBKJ/P39yWtuaYwMxuI5oKdOnTKyOhK7B2PZu2Gm3wJBrVavXbvW09OTx+O5ubktWLDg7t27BpdKJBKFQpGTk4MX5efnU78hmzZtIn7fOzF79mzqitavX48QKiws1I/B4I07qLPuCIIoLS2dN2+evb09nm93+vRp8tfxsmXLmG9v7xI9HkgkJSQkMN98uVwulUpv376tUCjEYrFQKAwKCsrNzaW2r9Foli9f7ubmJhQKAwIClEoleTq5YcMGXKekpCQwMFAkEslkMuoEmMDAwP6edUMQxHvvvcflcquqqvBL3HdMMjjJZOXKlbT/VX1yOOHJ+F5eXjweb9iwYeHh4RcuXKCuJTQ01M7OzsgsGiOn22Si1+l0X331VXR0NL7ERCKRBAcHG5wTfP369YiICHt7ezs7u9DQUNonyyQeLC8vT6FQSCQSPp8/duzYrVu3GszyiYmJtJgVCgW1Ah54ePr0qfHVYZDon0sMv7SD2bOc0fcOTvTmXKNJGB4zGo1GKpXS7nUzADU0NAiFQv1J8ZZi5njwvW6oc1iNY3eihz56AEwjkUiysrIyMjL27Nlj6Vi6RRBEUlKSvb09vu7P4swcT0VFRUxMzMaNGxcsWGCG1Q18kOgBMJmvr+/Vq1fPnTun1WotHYthtbW1FRUVOTk5Js0K6z9mjmffvn07duzYsWOHGdb1XBjQd0kErJGSkoJHJhBCHA5n06ZNtCdFPHc8PDxMui+jmbm6upr5JkjGmTmenTt3mm1dzwVI9MAc1q1bt27dOktHAcAgBV03AADAcpDoAQCA5SDRAwAAy0GiBwAAlmPzYCztCkNAg2/Ygm9aAjA4ZgYtdn/0HMKURwA/Ryx4g0MAwHOKrfmQzWf0J06cmD9/vqWjGLjww6rwM0IBQojD4cAxM2idPHkyPj7e0lH0F+ijBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AghpFQqly5d6unpKRQKhwwZMmHChD/+8Y//+Mc/ysvLLRLP2bNnvb29ySc1U9nZ2XEorKysHB0d5XL5qlWraI9mBv3q/v37kZGRWq1WrVaTH4evry/1YacIIepSDoczZcoUSwVsnJFDrqGhYe/evaGhoUOGDBEKhWPGjElISCgsLKTWIQji8uXLq1ev9vb2FggEzs7OAQEBR44c6d1sxfb29t27d/v5+YnFYmdn54iIiKysrO6aioyM5HA4tJuhvvvuu/hBIuDfLPjQk36FmD0tqLOzc926dVwud/369Xfu3NHpdCqV6vz58zNmzMD7p7293QzRksrKyubOnTtp0iR7e3uDz4wlCOLGjRsIoaioKIIgOjo6VCpVZmZmSEgIQmjp0qUtLS0M12X+J0wNcAyPGYIgbty4MXTo0M8++4wsIZ94bvDJU/n5+bRHCQ4cPR5yy5Yt43K5n376aU1NTUtLy6VLl8aNG2dtbU19FuudO3cQQjNmzCgsLGxtbS0vL1+4cCFCKDk52dR4mpubAwICJk2a9OOPPz558uT+/fuxsbEIoZs3b+pXPnjwIN7ttGfGlpWVeXp6bt68mfl62f2EKfZuGOPnfyKEqA9lxjo6OiIiIsyf6BcuXPjxxx+3t7d393Bw4veJnuqdd95BCEVGRnZ1dTFZl5kTvUgk0n+m9oBqn+Ex09jYOHz4cFpCVyqVAoHAyckJIaT/PNWBnOh7POSWLVv2xhtvUEsKCgoQQmPGjCFL7ty5w+VyHz9+TJa0tbU5OTkJBAKdTmdSPCtXrrS3t1epVGRJc3OzQCDQT/RVVVWOjo6LFy/WT/TEb48SZP48UUj0zyUmX9o7d+5YWVkZfJozQRB5eXnmT/TkQ5B7kei7urr8/f0NJhqDINHTMEz0mzZtoj4cHFMqlRKJJDs728rKSiwWl5aWUpcO5ETP5JDTJxQKraysjJ9STJ48GSGk0WiYB6NSqaytrVeuXMmk8qxZs954443Dhw8bTPQEQcTFxQ0fPpzhV5jdiX5Q99GnpqZ2dXXhC0T1TZs2jSAIg72W/UcoFPb6vRwO580330QIff75530XEfgdgiDS0tL8/f3d3d31lyoUis2bNzc1NcXFxdE66wesXhxyLS0tra2tEyZMMHKjEY1Gc+/ePV9fX4lEwrzlb7/9trOzMyAgoMea6enpxcXFKSkpRupER0dXVlaeOXOGeQBsNagT/aVLlxBCkyZNYlK5vr7+7bffHjVqFJ/Pd3R0jIiI+OGHH/CizMxMcrTt119/jY+Pd3BwcHJymjNnDh7O1Wg01BE5PHDU0dFBluBeyGeHvyFXrlxpb2/vkwYxI9u+fft2vAnklzM7OxuXDB06FJekpKRwOJyWlpbLly/jRfjfJy7ncDjDhw9XKpVhYWFisdjW1jYkJOTy5cvP3n5/KCwsrK2tlcvl3VX44IMPwsPDi4qK1qxZY6SdZzmcSHV1dUlJSR4eHnw+f9iwYTExMbhTpb/h22Zs2rTJ4FKtVnv58uXIyEhXV9dDhw6Z1PL169cRQo6OjsnJyTKZjM/njxw5Mikp6fHjx9RqlZWVycnJ6enpYrHYSGv4J8V3331nUgzsZOmfFP0FMfgZ7ubmhhD66aefemytpqbG09PTxcUlKyursbGxtLQ0JiaGw+Hs37+frBMVFYUQioqKysvLa25uvnDhglAonDp1Kllh5syZVlZWZWVl1JanTZtmsKelF103BEG0trbij7W6urrHjWLYdcNk2/W7Tfz8/GidFd11rcjlcpFING3aNLzflErlpEmT+Hz+xYsX+6T9kJCQIUOG5Ofn97ilTI4Z3FHw0Ucf0cpx1w3+u66uTiaTIYTwtBNCr+umTw6n6urqkSNHuri4nDlzpqmp6datW0FBQTY2Nnl5eT1uqUEMu25UKpWLi8vy5csNLt22bRs+AoODg4uKikyNAW+1q6trQkJCeXl5Q0PDwYMHRSKRt7c3tQtIoVCsWrUK/22k66axsREhFBgYyGTV7O66Ye+GMU70P//8c4+tLV26FCH05ZdfkiU6nc7d3V0oFJKjRvgYxfPAMHyeXldXh19+//33CCHyACUIIjc3d8SIEQb7EHuX6J88edLniZ7Jtj9jokcI3bhxgywpKipCCMnlciPvZd5+UFCQo6Mjk/TH5JjZtWsXQmjPnj20cmqiJwgiPz+fx+OJRKI7d+4Qeom+Tw6nJUuWIISOHj1KVqipqREIBN2NOfWISaJXq9WTJ0+Oj4/v6Ojork5bW9udO3f++7//29ra+sMPPzQpBoVCgRDy9PSkfinwL+AtW7bgl6mpqV5eXs3NzfilkURPEASHwxk9ejSTVbM70Q/qrhvczapWq3useerUKYTQ7NmzyRKBQBAWFtba2kr7YTh16lTyb3xaV11djV+GhYX5+voeOHCgvr4el/zlL39Zu3ZtH/Yz1NTUIIR4PB7ZrfHsmG97r4lEIvwrG5s4caK7u3thYSHenGd08eLFx48fT5s27dmbQgjhnncej2e82osvvpiSktLS0hIXF0f+zCL1yeGUmZlpZWU1Z84csoKrq+v48eOvXbuGnzTQ51paWhQKxbhx444ePWptbd1dNT6fP3bs2H/84x+RkZHvv/8+Pr9hSCQSIYRmzJhB/VLMnTsX/dYD8+DBg/Xr16enp+OaPeJyufr7fxAa1Ik+KCgIIYTPH41oa2trbGy0sbGhdQi6uLgghFQqFbWQOvTE5/MRQl1dXWRJcnLykydP8GDp3bt3L126tHz58mfdDIrc3FyE0LRp03rMRAyZtO295uDgQCtxdnZGCD169KhP2u9DNjY2CCEmQyBJSUnx8fG3bt3CI+SkPjmccCNdXV0SiYQ6/IP7uO/du9frDexOR0dHXFycVCo9ePCgkSxPhRP06dOnma/Fw8MDIYRnqZLwwVBXV4cQwp1dwcHB5Cbj6ZVbtmzBL8vKymhhP8sEB9YY1Ik+MTGRy+VmZGQYXPrOO+9YWVmVlJQIBAKJRKLT6ZqamqgVamtrEUKurq7M1xgfHy+Tyf7+97+3tbV98sknK1asMD6aZJKurq49e/YghFavXt1XbTLcdisrq6dPn1IraDQaWlNGZmjU19cTv7/uEad4/A1/9vb7EO7uw52/PUpLS/Px8UlPT8fdC1ifHE4CgcDBwYHL5Rrs98NXz/WtxMTEtra2kydPkufao0ePvnLlivEgEUK0cVTj8JA77ZccPhjwP8LVq1fTNpbWdTN69GjyjVqtlvith3aQG9SJ3tvb+4MPPrh69Wp6ejptUWlp6b59++bPnz927FiEUHR0NEKIOk+rra0tJydHKBTiXkWGuFzun//850ePHn3yySfHjx9PSkrqi+34t40bN/7888/R0dHdTRjtHSbb7ubmVlVVRVZQqVQPHjygtWNra0smax8fn9TUVHKRTqcjryxFCN28ebO6uloul5Nf0Wdsvw9NmDAB/fYUxh7Z2dl9/fXXIpGINuG1Tw6nmJiYjo4OcnoStnPnzhEjRnR0dDBshKGtW7cWFxd/8803OHfrW7du3aJFi2iF586dQ7/vferRrFmzpFJpdnY2dXJqVlYWQmjevHmmho2PGfyRDXb9PAZgMYjx5ezvvvsuj8fbsGFDaWlpW1tbZWVlWlqam5tbQEAAOeBDnSah1WrJaRLUS2rx6FlraytZsmHDBvT7YUaCILRaLf65/dprrxmJiuFgbGdnZ21tbWZmZmhoKELo9ddfJ69/6VEvZt10t+24d+Kzzz5ramoqKyubP3++VCqlDZbOnDlTIpE8ePAgLy+Py+Xevn0bl8vlcolEEhYWZmTWzbO037ezbrq6upydnfVHfWmDsVRHjhxBCHU366bXh1Ntbe2oUaO8vLzOnj2r0Wjq6+v37t1ra2tL3YSEhASEUEVFRY/bTnR/yH3xxRfdZQ9yryYnJ3M4nP/5n//55ZdfdDrdL7/8gq/T9vPzox6QTOI5d+4cl8uNioq6e/duQ0PDoUOHRCKRv79/dwe2kcHYY8eOIYSot2owgt2DsezdMMaJniCIn3/+efHixTKZjMfjicXiF1988W9/+1tbWxu1jlqtXrt2raenJ4/Hk0gkCoUiJycHL6I9VnjTpk3E7zsiZs+eTW1q/fr1CKHCwkL9SPDJCw1tIiN1EYfDkUgkEydOXLly5bVr10zaRcyvjDWy7ZhGo1m+fLmbm5tQKAwICFAqlX5+fjjCDRs24DolJSWBgYEikUgmk1FnrcjlcqlUevv2bYVCIRaLhUJhUFBQbm5uX7UfGBjYh7NuCIJ47733qFfG4r5jksFJLytXrqT9W+qTwwlPxvfy8uLxeMOGDQsPD79w4QJ1LaGhoXZ2dkZmyBAMDjnqoDENmegbGxvT0tIUCgWe1G9nZ+fn5/fxxx/TsjOTeAiCyMvLUygUEokEj+tu3brVYJZPTEykxaNQKKgV8KDC06dPja8Og0T/XGL4pR3MBshNzXCit3QUBMH4mNFoNFKp1ODNywaUhoYGoVDY3YR38zNzPPheN9Q5rMaxO9EP6j56AHpBIpFkZWVlZGTgoe+BiSCIpKQke3t78gomyzJzPBUVFTExMRs3blywYIEZVjfwQaIHwGS+vr5Xr149d+6cVqu1dCyG1dbWVlRU5OTkmDQrrP+YOZ59+/bt2LFjx44dZljXc8Gsd+wCgColJQUPVyCEOBzOpk2baI+PGMg8PDxMmiFuZq6urviiigHCzPHs3LnTbOt6LkCiBxazbt26devWWToKANgPum4AAIDlINEDAADLQaIHAACWg0QPAAAsxyF+f9Eda3A4nBdffHH48OGWDmTgwnekevHFFy0dyECRkZEBx8ygVVlZeeXKFdbmQ7ZuWN/e2Auwxs2bNxFCEydOtHQgYCDCT0lkH9YmegAMmj9/PkLo5MmTlg4EAPOBPnoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOUj0AADAcpDoAQCA5SDRAwAAy0GiBwAAloNEDwAALAeJHgAAWA4SPQAAsBwkegAAYDlI9AAAwHKQ6AEAgOUg0QMAAMtBogcAAJaDRA8AACwHiR4AAFgOEj0AALAcJHoAAGA5SPQAAMBykOgBAIDlINEDAADLQaIHAACWg0QPAAAsB4keAABYDhI9AACwHCR6AABgOQ5BEJaOAYB+dOjQob/+9a+dnZ34pVqtRggNHToUv7S2tn777bdfe+01i8UHQP+DRA9Y7u7duz4+PkYqlJaWent7my0eAMwPum4Ay3l7e8vlcg6Ho7+Iw+HI5XLI8oD1INED9nvttdesra31y7lc7pIlS8wfDwBmBl03gP2qq6tlMllXVxetnMPhPHz4UCqVWiQqAMwGzugB+7m7u7/00ktWVr872q2srKZPnw5ZHgwGkOjBoLB48WJaCYfDgck2YJCArhswKDQ0NLi4uLS3t5MlXC5XpVI5OTlZMCoAzAPO6MGg4Ojo+Morr5BDstbW1gqFArI8GCQg0YPBYtGiReR4LEEQixYtsmw8AJgNdN2AweLJkydOTk46nQ4hZGNjo1arRSKRpYMCwBzgjB4MFra2ttHR0Twej8fjRUdHQ5YHgwckejCIvPrqq+3t7e3t7a+++qqlYwHAfLjUF5WVlXl5eZYKBYD+1tnZaWtrSxCEVqs9efKkpcMBoL+89NJLw4cP/89rguLEiROWCwwAAEDfOHHiBDW3c/VrwPAseL6cPHkyPj6e4XH7448/cjicl19+ub+jsqC4uDiE0FdffWXpQIBl6N/Cz0CiB4DFAgMDLR0CAOYGiR4MLrQ73gAwGMBBDwAALAeJHgAAWA4SPQAAsFy/JPqUlBQOh8PhcH43kbOv39JPjbCepfbS2bNnvb29udyeh4WOHz+OI7SxsTFDYOD+/fuRkZFarVatVnN+4+vri28XQaIu5XA4U6ZMsVTAxhk50hoaGvbu3RsaGjpkyBChUDhmzJiEhITCwkJqHYIgLl++vHr1am9vb4FA4OzsHBAQcOTIkd5NR2xvb9+9e7efn59YLHZ2do6IiMjKyuquqcjISA6Hs337dmrhu+++2wcT3/Xn0RN9RC6XS6XS/n5LPzXCerS91NTUNHr06NmzZ/fHusrKyubOnTtp0iR7e3tra2uG7woLCxMIBExq9vq47dettqDY2NjY2FiGlW/cuDF06NDPPvuMLFEqlTg5JCYm6tfPz893cnLqm0D7Wo9H2rJly7hc7qefflpTU9PS0nLp0qVx48ZZW1ufOnWKrHPnzh2E0IwZMwoLC1tbW8vLyxcuXIgQSk5ONjWe5ubmgICASZMm/fjjj0+ePLl//35sbCxC6ObNm/qVDx48iHf7tm3baBvl6em5efNm5utFevPooesGIIQQQRBdXV36D9vrE1u2bHnppZeuXbsmFov7o/1e69etZsLOzi4gIMBSa0cIabXauXPn/vGPf3zzzTep5QKBwMnJad++fV9++aWlYusFJkfa66+//uc//9nV1dXW1jYwMPDYsWOdnZ3vvPMOtQ6Xyz158uSkSZNsbGy8vLwOHDjg5OT097//va2tzaR41q9fX1RUdP78+ZdfflkoFI4YMeLAgQMCgUC/ZnV19dq1a/Ufj4MQGjVq1KlTp3bs2PEs13LD9EqAEEJisbi8vLyfGv/nP/8pFAr7qfFn0a9b/VzYtWuXSqV6//33aeU2NjZHjx6dNWtWYmKin5+ft7e3RcIzVY9HWlpaGq1ELpcLhcLy8nKCIPB1RmPHjqU+oAYhxOfzZTJZQUGBTqczmKYNqq2tTU1NfeONN1xcXMhCkUhE6xDDVqxYERcXFxgYePjwYf2lcrk8NjY2OTk5JiaGSeenPjijB/1uYGZ5QBBEWlqav7+/u7u7/lKFQrF58+ampqa4uDiDuWkA6sWR1tLS0traOmHCBP2rSUkajebevXu+vr4SiYR5y99++21nZyeTX2zp6enFxcUpKSlG6kRHR1dWVp45c4Z5AFS9TPQlJSXz5s2TSCS2trYvvPDC6dOnZ8yYgYdoli9f3t276uvr33777VGjRvH5fEdHx4iIiB9++MFg47Nnz8aNh4SEXL58mVzU0dFx4sSJV155xdXVVSgUTpw48W9/+1vvfnpnZmaSw0r379+Pj48Xi8VOTk6LFy9uaGj49ddf586dKxaL3dzcVqxY0dTUxDCGgIAAsln8aAtyz3A4HI1GYyQk6jCpUqkMCwsTi8X6O4HJnmS4q/V3Bf5KU0t+/fXX+Ph4BwcHJyenOXPm0E6Be3ck6CPbEYlEgYGBubm5zN/bO73baiaf0fbt23Ed8kuenZ2NS4YOHUptp6Wl5fLly3hR787UnkVhYWFtba1cLu+uwgcffBAeHl5UVLRmzRoj7Rg52JgfSHV1dUlJSR4eHnw+f9iwYTExMQUFBX2ymcbhG0Vs2rTJ4FKtVnv58uXIyEhXV9dDhw6Z1PL169cRQo6OjsnJyTKZjM/njxw5Mikp6fHjx9RqlZWVycnJ6enpxjs2J0+ejBD67rvvTIrhP6gd9gwHte7du+fg4CCVSs+fP9/U1HTr1q0ZM2YMGzaMNnRGG+6rqanx9PR0cXHJyspqbGwsLS2NiYnhcDj79++nvkUikYSEhOTm5jY1NSmVykmTJvH5/IsXL+IKWVlZCKGPPvro8ePHdXV1//d//2dlZbVu3Toj6zUuKioKIRQTE3P16tXm5mb8WUZERERFRd24caOpqWnv3r0Iobfeeot8S48xFBQUiEQiuVze3NxMEIROp/P39//yyy8ZhiSXy0Ui0bRp0/Ly8pqbm/V3Qo97kuGupu0lvCtaW1tpJVFRUTiSCxcuCIXCqVOnkhUYHgkkqVRqcIiM1k5RUVF4eLiHh0d/D8YSvdpqgsFnRBCESCSaPn069V1+fn60YUz9OlhISMiQIUPy8/N7t1EMB2NxL8FHH31EK1cqlRKJBP9dV1cnk8kQQnjaCaE3GMvkYOtxl1ZXV48cOdLFxeXMmTP4QAoKCrKxscnLy+vdHujuSKNRqVQuLi7Lly83uHTbtm04SQYHBxcVFZkaA95qV1fXhISE8vLyhoaGgwcPikQib29vjUZDVlMoFKtWrcJ/40+ENhiLNTY2IoQCAwOZrBrpDcb2JtHjWyZlZGSQJY8ePbK1tTWe6JcuXYoQouY7nU7n7u4uFApVKhX5FoQQ9fguKipCCMnlcvwyKysrODiYupZFixbxeLzGxsbu1msc/jDOnDlDlowfPx4h9OOPP5Ilnp6ePj4+5EsmMeBhk5iYmK6uriVLlrz33nsM4yF+2wk3btwgS2g7occ9yXBXM0z0eDYYhucM1NXV4ZcMjwRSd18//XaqqqoEAoEFE72RrSYYfEbEsyX6oKAgR0fHXqc5hol+165dCKE9e/bQyqmJniCI/Px8Ho8nEonu3LlD6CV6Jgdbj7t0yZIlCKGjR4+SFWpqagQCgZ+fH/OtpmKS6NVq9eTJk+Pj4zs6Orqr09bWdufOnf/+7/+2trb+8MMP/3979x7W1JE3DnyCJCEkcEDkGlEuVuxLMXXRF7UgApZ4A5QS0UofrdVStWVp1XrF+lapyvLUda3dBS1rrdbWakXBS1Uq3UVwBSrgpYiA1nIJApIQroI5vz9me36nJ5AcICQYv5+/yGQyM2cy+XIyMzmnT22QSqUIIXd3966uLioRb51MSEjAD1NTUz08t+cZ3gAAIABJREFUPPAZIak10JMkyeFwxowZw6ZqzUDfn6mbCxcuIITwYWD29vbjxo3T/qpTp04hhObMmUOl8Pn8kJCQ9vZ2+vcRCwsLPz8/6qGPj4+Li0txcXFtbS1CaO7cuYwpCIlE0tXVdfv27X4cCIW+IxjPV9JTxGJxTU0N9ZBNG2Qy2ebNm7///nt/f//Gxkbq1IAloVCIv6lhjE7Q2ZMsu5qlSZMmUX/jkzuqN/o3EjRpluPi4mLcBUAtR41pf48GKDs7+/Hjx1OmTBl4UVrgCSsul6s92+TJk5OTk1tbW2UyWXt7O+NZ9oNNS5emp6ebmZnNnTuXyuDk5OTt7V1YWFhVVdWPQ9OptbVVKpX+z//8z9GjR6lbxmvi8Xjjxo37+9//Hh4evnXr1suXL7OvAt/CbMaMGfRJubCwMPT7DMzDhw/XrVuXlpbG8mZn5ubmmv3PUp8DfWdnp0qlsrCwEIlE9HRbW1vtr1IqlRYWFox5KLweLZfLqRQ7OzvGqoiDgwNC6NGjRwghpVK5detWHx8fW1tbPPG3bt06hFBbW1tfD4TO2tqa+tvMzGzYsGGWlpZUyrBhw+jLACzbsH37dj8/v9zcXJlM1tcLadnY2DBSqE7Q2ZPsu5ol+gIUj8dDCOHe6N9I0NRbOfiQjaW3o6ZoeY8Gv3X6gX+Pxthh0qO4uLjo6Ohbt24xdmH2abBpGUhKpVKtVhMEQf9BFp7jvnfvXr8PsDfd3d0ymUwsFn/55ZdaojwdDtCZmZnsa3Fzc0MI2dnZ0RPxIKmvr0cI4cmu6dOnU4eMt1cmJCTgh+Xl5Yxm93tfQ58DPZ/Pt7Ky6ujoaGlpoadrH998Pp8giI6ODvqqJkKorq4OIeTk5ESl4KkozZJxB4WFhW3fvn3FihVlZWVqtZokyT179iDDXkOfZRuys7OVSqWPj8+qVasYP73TqbGxkVEa1Qk6e5J9Vw9Q/0YC+3IYa1ZDjZb3CD80MzN78uQJPYPmUryWnR4G4OzsjHr6xPXo4MGDXl5eaWlp9P1/ehlsfD7fxsbG3NycPsVBCQoK6sMhsRMbG9vZ2Xn8+HHqXHvMmDHXrl3T3kjUxzGJl+IZ3/DwIMH/CFevXs04WMbUzZgxY6gXNjc3kySJ37J+6M/UzaxZs9DvX7cxuVxeVlam/VXz589HCNG3B3V2dmZlZQkEAvp39paWFnpYvHnzZk1NjUQicXZ2fvr06dWrV52cnOLi4uzt7fGHpN/fZfqHZRvu37//1ltvnTx58syZMwKBICIiAv8PZ6mjo4P6dSL6YycgFj3JsqsHrn8jgU05DQ0Nd+/e1UcbB4v29wgh5OzsXF1dTWWQy+UPHz5kFGJpaUn9M/Dy8kpNTR3kVv/BSy+9hBBiOTciEolOnjwpFAo///xzerpeBltkZGR3dzdja9nu3btHjRrV3d3NshCWtm3bdvv27dOnT/e2I37t2rV4vxzd+fPn0R9nn3SaPXu2WCy+cOECfXMq3soxb968vjYbjyX8lvUH/f8Jy0Wt8vLy4cOHU3skbt68OXPmzNGjR7PfddPc3EytzqemptJfIhQK/f39r1271uNmhuDgYIRQUlJSfX19W1vbjz/+OGrUKITQpUuXeqtXO821OKlUyljGCQwMFAqF1EOdbVCpVOPHjz99+jR+mJ2dzeVyp02b9uTJEzZNwluPQkJC2Oy66bEnWXY1y8VYesr69esRbRGS5Uig9LZExijn9u3bUqkUf31h02ODsRir5ahJFu8RSZJ4lmPfvn0qlaq8vHzBggVisZixGDtz5kyCIB4+fJibm2tubn7nzh2cbphdN2q12sHBQXM1mLEYS3fkyBGEUG+7bnobbDq7tK6uztPT08PD49y5cwqForGx8R//+IelpSV9RXHx4sUIocrKShYd0OtI++c//9lbJKR6e82aNRwO5//+7//u37/f0dFx//59/LtZX1/ftra2PrXn/Pnz5ubmERERZWVlTU1Nhw8fFgqFfn5+9HLotCzGfv311wgh+qUatEB62XVDkuTdu3fnzZtnbW1taWk5derUn376afr06fi2yyRJ/uUvf6H34ObNm3F6Q0NDfHy8u7s7l8slCEIqlWZlZTFeIhaLr1+/HhQUJBKJBAJBYGBgTk4OVW99fX1sbKyrqyuXy3V0dFy6dOmGDRvwC319fXurt0d5eXmMzPQTNITQzp07//3vf9NTPvroI51tWL16NZX/5s2bjBP53tbT6XAIvnPnjlQqtbKy0uwE7T3JvqupA8fraZTFixdrdg75x2kK6vow2kcChs9iGOjb7+jl4I13mZmZISEhOOdbb72lvcf6F+gHctRs3iOFQrF8+XJnZ2eBQODv75+fn+/r64vLWb9+Pc5TWloaEBAgFApdXV3pu18CAgIMsOuGJMlNmzaZm5tXV1fjh4zh2uOml5UrVzL+XWkZbOy7FG/G9/Dw4HK59vb2oaGh9LM3kiSDg4NFIpGWHTIki5FGXzRmoAK9Uqk8ePCgVCrFm/pFIpGvr+/OnTsZ0ZlNe0iSzM3NlUqlBEHgdd1t27b1GOVjY2MZ7ZFKpfQMeFGB5cki0leg1+Tl5TVq1Kj+vRbQPesXZTP8SNDvxfjYGOLvEftAr1AoxGJxjxcvG1KampoEAkFvG94Nz8DtKSoq4nA47H+Loxno+zNHL5fLhw8fTl+sf/DgQUVFBZ7TAM8PGAnPOoIgMjIyTpw4sX//fmO3pVckScbFxVlbW/d1m/IgMXB7KisrIyMjN27cuHDhwn4X0s9LIDQ1NcXGxv72229tbW3Xr1+Pjo62trZOSEjodzvAMwpGwrNuwoQJBQUF58+fb25uNnZbelZXV1dZWZmVlaXHPWMDYeD2pKSkJCYmJiYmDqSQ/gR6Jyeny5cvKxSKadOm2drahoeHv/DCC9evX/fw8BhIUwYDp3fbtm0bak0SiUQcDqe4uLi6uprD4WzZssUoLWTvGRoJ+oKvUfMMvUdsuLm5ZWZm0n9NMqQ4OTnl5OTgn6wPBQZuz+7duwdyLo/18zpKISEh1FrZUEYacH89S0OwSQPxrIwEfVm7du3atWuN3QoA+gYuUwwAACYOAj0AAJg4CPQAAGDiINADAICJ62ExFl8cHIBnBb5aC4xbCr4+F3QIoMAZPQAAmLgezujxTRQBeFYcP348Ojoaxi0Fn8tDhzy3NC9/DWf0AABg4iDQAwCAiYNADwAAJg4CPQAAmDh9BvqioqK3337by8tLJBKJRKKxY8eGhobu2rUL30cG/X5BKA6HM3LkSJZl9uMlbAppaWmhX02McXsEunXr1lHZduzY0e820OGLl9GZmZnZ29vPmzePcfOTftNLv/XDuXPnxo4dS7/tPYVx1GZmZra2thKJZNWqVYWFhYZsJBgkv/76a3h4eHNzc0NDA/VGT5gwgX4vPYQQ/VkOhzNx4kRjNViLrq6uPXv2+Pr6WllZOTg4zJo1KyMjo7cLVYWHh2vGhw0bNuA7JQwJ9IvT9/sGDk+fPv3www+HDRv27rvv3rhxo62tramp6fr168uWLcO15OfnU5n7cdMGvdznQbOQGzdu4ObNmjWrx5c0NDSIRCKE0OLFiwdYOwOuOiIiAj9UKBTff/+9g4MDl8tl3FhnIBiHrFKpxowZQ93TR7/Ky8vDwsLGjx9vbW3d413cyD8edXd3t1wuT09Px3d/Xrp0aWtra/+qNvyNR4Y49jce0aMbN26MGDFi3759VAp11tLjjU3y8vIYd6oaOlpaWvz9/cePH//TTz+1tbX9+uuvUVFRCKGbN29qZv7yyy/xYTLuH1deXu7u7r5lyxZDtfr/Q3q58YimhISEpKSkzz77bN++fS+//LJAILCxsZk0adIXX3yBbw45ZAkEgtGjR58/f76goEDz2T179ri6uhqgGQRBzJ8//9NPP+3q6oqPjx+kWkiSVKvVarV6MApPSEiYOnVqYWGhlZUVm/zDhg1zdHSMiIj48ccfP/zww0OHDi1atIh8Fi7tKRKJ/P39n93yB0Nzc3NYWNhrr72G75RL4fP5dnZ2KSkpx44dM1bb+mHdunUlJSUXL16cNm2aQCAYNWrUoUOHeryZeE1NTXx8/BtvvKH5lKen56lTpxITE48fPz74TdZBD4H+l19+2bVrl6+v7zvvvKP57IYNGywsLAZeyyAxMzPDd3zVnJZRKBR///vfDfmPCp/b3r59W6FQDEb5VlZWFRUV586dG4zCv/jiiw0bNvQ4aaPTrl27/Pz8zpw588033+i9YcAAkpKS5HL51q1bGekWFhZHjx41MzOLjY0tKyszStv6qq6uLjU1dfHixY6OjlSiUCjs6Oh46aWXGJlXrFghk8lCQ0N7LEoikURFRa1Zs6a7u3sQW8yCHgJ9amqqWq3u7ffWNjY27e3tQ3MaDnvzzTfFYvGZM2dKSkro6X/7299mz57t6elpsJZQ57Oav3cY+gQCQb9fy+Fw8Jng559/rr8WAQMhSfLgwYN+fn4uLi6az0ql0i1btqhUKplMxpisH5rOnDnz9OlTNl+q0tLSbt++nZycrCXP/Pnzq6qqzp49q78G9oceAv2//vUvhJBEIul3CfgG8J6enjwez9bWdtasWVeuXNHMVlpaOmfOHIIgLC0tg4KCrl69Sj3V3d397bffvvrqq05OTgKBwMfHZ+/evSznKPh8/rp160iSpN+sq6WlZd++fZs2bdLMr70uf39/apUpJiYGITRjxgwqRfupenZ2NkLI29ubIAg23cKy37D09HSqGfjzRk958OBBdHS0jY2NnZ3d3LlzKyoq6K8tLS2dN28e7vn//d//zczMpA5q+fLlOvqXHfy5unbtGv0OtHqnpcd27NiBj4j6hF+4cAGnjBgxAqfgJe7W1tarV6/ip/A3GPrSd35+fkhIiJWVFWOUDqT8Ia64uLiurk5LBPjoo49CQ0NLSkree+89LeVoeXfYj9X6+vq4uDg3Nzcej2dvbx8ZGVlUVNSnw/n5558RQra2tmvWrHF1deXxeKNHj46Li3v8+DE9W1VV1Zo1a9LS0rTPVb788ssIoR9++KFPbdA/+oR9/xa1nJ2dEUL/+c9/WOZnrBDW1ta6u7s7OjpmZGQolcq7d+9GRkZyOJwDBw7QX0IQRFBQUE5Ojkqlys/PHz9+PI/Hy87OxhkyMjIQQp988snjx4/r6+v/9re/mZmZrV27Vku9JEneuHFDKBSSJNnW1ubo6GhmZnbnzh381K5duxYsWECS5L///W/0x8VYnXUVFRUJhUKJRNLS0kKSZEdHh5+fH+MO7ozFWKVSyViM1dktLPuNccgREREIofb2dkZKREREbm5uS0vLpUuXBALBpEmTqAz37t2zsbERi8UXL15UqVS3bt2aMWOGvb09n8/v8f0Vi8VsFmMZ2tvb8YCsqanp8bVasBy3bHpMKBS+8sor9Ff5+voy1gw182ASiUQoFE6ZMgX3pOYoHWD5QUFBw4cPz8vL03mkBl6M/eqrr/AngpGen59PEAT+u76+Hi93HTlyBKcwFmPZvDs6x2pNTc3o0aMdHR3Pnj2Lx2pgYKCFhUVubi77w8G1ODk5LV68uKKioqmp6csvvxQKhWPHjlUoFFQ2qVS6atUqeg8wFmMxpVKJEAoICGDfgIFDGouxegj0+A65moGe/h+e/tlmRJ+lS5cihOhxsKOjw8XFRSAQyOVyelH0IY6nWSQSCX6YkZExffp0eu0xMTFcLlepVPZWL0kL9CRJ7t69GyEUExNDkmRra6ujo2NxcTHZS6DXWRdefomMjFSr1UuWLNm0aROjc6gNPxiHw7GzswsPD79+/TrLbmHZbywDPd46huENBvX19fghnpQ7ceIEleHRo0eWlpb6DfRtbW2DHejZ9NgAAz1CCG8mxhijdIDlBwYG2trasolZBg70SUlJCKH9+/cz0umBniTJvLw8LpcrFAp/+eUXUiPQs3l3dI7VJUuWIISOHj1KZaitreXz+b6+vuwPRyqVIoTc3d27urqoRLyGl5CQgB+mpqZ6eHjgMzlSa6AnSZLD4YwZM4Z9AwZOM9DrYepGLBYjhBoaGhjpRUVFJG2LVW9OnTqFEJozZw6VwufzQ0JC2tvb6d93LCws/Pz8qIc+Pj4uLi7FxcW1tbUIoblz5zJmLSQSSVdX1+3bt1kexapVq+zs7I4dO1ZeXp6SkjJ58uTx48f3mJNNXTKZbPPmzd9//72/v39jY+P27dt7LIoKeWq1uqGh4fTp05MmTcJP6ewWlv3GElUvQgifedXU1OCHFy5cQAjh0Y/Z29uPGzeur1Voh99HLpdLzWPonX57rEdCoRB/VccYo3SAsrOzHz9+PGXKlIEXpV94JpDL5WrPNnny5OTk5NbWVplMRn2Bo7B/d7SM1fT0dDMzs7lz51IZnJycvL29CwsL8bWs2RAKhQihGTNm0OfNwsLC0O8zMA8fPly3bl1aWhrOqZO5ubnm8RqYHgL9tGnT0O8TW33V2dmpVCotLCwY81x4vVsul1MpdnZ2jCVKBwcHhNCjR48QQkqlcuvWrT4+Pra2tngib926dQgh6jxRJ5FIFB8f//Tp048++ig5OXnLli295WRZ1/bt2/38/HJzc2UymZlZ3/pZZ7ew7zeW8KoAxuPxEEJ41aGzs1OlUllYWODfE1BsbW37WoV2OTk5CKEpU6bojBf9o/ce65GNjQ0jhT5KTRXeVsdmcSUuLi46OvrWrVuMXZh9ene0jFWlUqlWqwmCoP8gC4eme/fusTwcNzc3hJCdnR09Eb+P9fX1CCE8uTR9+nSqCry9MiEhAT8sLy+nv7a7u3sgWxX0Qg+BfsWKFWZmZt988w3Z903QfD6fIIiOjg6VSkVPr6urQwjhSSEMT3XR4Q8PfgPCwsK2b9++YsWKsrIytVpNkuSePXsQbR8LG++99x5BEF9//bVEItGyTYhlXdnZ2Uql0sfHZ9WqVcXFxeybgVh0C/t+GyA+n29lZdXR0dHS0kJP12/kUqvV+/fvRwitXr1aj8XSsewxMzOzJ0+e0DNorp9r2RPV2NjIGAb0UTrw8ocmvEqn+Qnt0cGDB728vNLS0vB0B6aX8czn821sbMzNzelTLhS8d5kNvFrO+BKG30f8j2f16tWMwhlTN2PGjKFe2NzcTP6+kGlEegj0L7744oYNG27fvo2n6hiePn2q/eXz589HCNG3H3V2dmZlZQkEAvp0QUtLCz1c3rx5s6amRiKRODs7P3369OrVq05OTnFxcfb29vhz0o/vSgRBfPDBBwRBaDmdZ1nX/fv333rrrZMnT545c0YgEEREROBzAfZ0dgvLfhu4WbNmod8ncDC5XK7fPdEbN268fv36/PnzB/WmSGx6zNnZubq6msogl8sfPnzIKMfS0pIK1l5eXqmpqdRTHR0d9LlK+ijVS/lDE95dznJuRCQSnTx5UigUMrbS6mU8R0ZGdnd30/fjIYR27949atQo9jvZZ8+eLRaLL1y4QN8MirdgzJs3j2UhFPx2a27ANzT6/6WBXAIBXxNm2bJlBQUFra2tbW1tJSUliYmJjo6Ow4YNoy9TaNl109zcTK22p6am0l8iFAr9/f2vXbvW436G4OBghFBSUlJ9fX1bW9uPP/44atQohBD9cgLaF2N7o7kYq7MulUo1fvz406dP44fZ2dlcLnfatGlPnjyhV416WZZk2S0s+43lYiw9Bf9GjFpULC8vHz58OLXr5ubNmzNnzhw9evQAF2OfPn1aV1eXnp6O+3PZsmVtbW299YZ2/dh101uP4SmFffv2qVSq8vLyBQsWiMVixmLpzJkzCYJ4+PBhbm6uubk5tVML7w0LCQnRsutmIOUP2V03arXawcFBcwGZsRhLd+TIEYRQb7tuent3dI7Vuro6T09PDw+Pc+fOKRSKxsbGf/zjH5aWlvSVycWLFyOEKisrtRzR+fPnzc3NIyIiysrKmpqaDh8+LBQK/fz8ehuiWhZjv/76a4TQqVOntFSnd2gwdt1QCgsLly1b5unpKRAIeDyek5NTcHDwjh07qD79y1/+Qv8fs3nzZpze0NAQHx/v7u7O5XIJgpBKpVlZWYyXiMXi69evBwUFiUQigUAQGBiYk5NDVV1fXx8bG+vq6srlch0dHZcuXYp/74oQ8vX17bFe+kKKVCrtrb/o8HU8tNdFn3y4efMm40QeDwXGGo6Xl1ePtWvpFvb9Rh0yXuyiLF68mHEpN9wt9BTqqjh3796dN2+etbW1paXl1KlTf/rpp+nTp1taWtIbg095GBg7F+lPcTgcgiB8fHxWrlxZWFioe3j1jv241dmlCoVi+fLlzs7OAoHA398/Pz/f19cXN3j9+vU4T2lpaUBAgFAodHV1pW81wf9W79y5I5VKraysNEfpAMsPCAgYmrtuSJLctGmTubl5dXU1fsgY9j1uelm5ciXjP5yWd4f9WMWb8T08PLhcrr29fWhoKOPiUcHBwSKRqLu7W/sR5ebmSqVSgiB4PN64ceO2bdvWY5SPjY1ljHlGMJHJZGKxmH6SZwBoUAM9eH54eXmNGjXK2K34ryEybvVy6T29MHygVygUYrG4x4uXDSlNTU0CgWD58uWGqa6oqIjD4TB+Q2MAmoEerkcPdJDL5cOHD6fvqXjw4EFFRQWecgEAIUQQREZGxokTJ/Ci+tBEkmRcXJy1tXVv2531q7KyMjIycuPGjQsXLjRAddpBoAe6NTU1xcbG/vbbb21tbdevX4+Ojra2tk5ISDB2u8AQMmHChIKCgvPnzzc3Nxu7LT2rq6urrKzMysrS47Y0LVJSUhITE+kXVjEiCPRABycnp8uXLysUimnTptna2oaHh7/wwgvXr1/38PAwdtOGCnyNmuLi4urqag6Ho2XXlmlzc3PLzMy0trY2dkN65uTklJOT4+3tbZjqdu/ePRTO5bFn4JJJwOhCQkJCQkKM3Yqha+3atWvXrjV2KwDoFZzRAwCAiYNADwAAJg4CPQAAmDgI9AAAYOIg0AMAgInrYdfNM3fxPAAQjFsN0CGAwiFpl4yoqqrKzc01YmsAGGz4mtLvv/++sRsCwCCaOnXqyJEjqYd/CPQAmLwFCxYghPC9HgF4TsAcPQAAmDgI9AAAYOIg0AMAgImDQA8AACYOAj0AAJg4CPQAAGDiINADAICJg0APAAAmDgI9AACYOAj0AABg4iDQAwCAiYNADwAAJg4CPQAAmDgI9AAAYOIg0AMAgImDQA8AACYOAj0AAJg4CPQAAGDiINADAICJg0APAAAmDgI9AACYOAj0AABg4iDQAwCAiYNADwAAJg4CPQAAmDgI9AAAYOIg0AMAgImDQA8AACYOAj0AAJg4CPQAAGDiINADAICJg0APAAAmztzYDQBgcDU0NDQ3N1MPW1tbEUKVlZVUirW19YgRI4zQMgAMhUOSpLHbAMAg+uc//7ls2TItGdLS0t58802DtQcAw4NAD0ycUqm0t7fv6urq8Vkul1tfX08QhIFbBYAhwRw9MHEEQcyePdvcvIdZSnNz8zlz5kCUByYPAj0wfTExMU+fPtVMV6vVMTExhm8PAAYGUzfA9HV0dIwYMQIvw9JZWlo2NDQIBAKjtAoAg4EzemD6LCwsIiMjuVwuPZHL5UZFRUGUB88DCPTgufD6668z1mO7urpef/11Y7UHAEOCqRvwXOju7nZ0dHz8+DGVYmNjU19f3+MiLQAmBs7owXPB3Nx80aJF1OwNl8uNiYmBKA+eExDowfNi0aJF1OxNV1fXokWLjNseAAwGpm7A84IkSVdX1+rqaoSQs7NzdXU1h8MxdqMAMAQ4owfPCw6H88Ybb/B4PB6Pt2TJEojy4PkBZ/TgOVJSUiKRSPAfPj4+xm4OAAYCi1HafPrpp3l5ecZuBdAnkUiEEPr444+N3RCgT1OmTPnggw+M3YqhC6ZutMnLy7t27ZqxW/EMOHHiRFVVlbFbwcro0aPd3NwGtYqqqqoTJ04MahWA7tq1a3BCph2c0eswefLk7777ztitGOo4HM7777+/YMECYzdEN3wleg8Pj8Gr4vjx49HR0TBsDEYmkxm7CUMdBHrwfBnUEA/A0ARTNwAAYOIg0AMAgImDQA8AACYOAr3+ffPNNxwOh8PhWFhYGLstfXbu3LmxY8fCRWAM6ddffw0PD29ubm5oaOD8bsKECR0dHfRs9Gc5HM7EiRON1WAturq69uzZ4+vra2Vl5eDgMGvWrIyMjN5+rBMeHs7hcHbs2EFP3LBhw7fffmuQxj5HINDr38KFC0mSDAkJMXZD+qaioiI8PHzjxo11dXWGqbGlpeWFF16YO3euYaobmoqKiiZOnBgaGmptbT1ixAiSJPPz83F6fHw8PSd+Ni8vz87OjiTJgoICIzW5V62trcHBwYcOHdqzZ8+jR48KCgpEIlF4ePjt27c1Mx8+fDgjI0MzfcWKFRs3bkxISBj89j5HINCD/0pISJg6dWphYaGVlZVhaiRJUq1Wq9Vqw1SnSSQS+fv7G6t2hFBzc3NYWNhrr7327rvv0tP5fL6dnV1KSsqxY8eM1bZ+WLduXUlJycWLF6dNmyYQCEaNGnXo0CE+n6+Zs6amJj4+/o033tB8ytPT89SpU4mJicePHx/8Jj8vINCD//riiy82bNhgyEkbKyurioqKc+fOGazGoSYpKUkul2/dupWRbmFhcfToUTMzs9jY2LKyMqO0ra/q6upSU1MXL17s6OhIJQqFwo6OjpdeeomRecWKFTKZLDQ0tMeiJBJJVFTUmjVruru7B7HFzxMI9OC/4KZ6BkaS5MGDB/38/FxcXDSflUqlW7ZsUalUMpmMMVk/NJ05c+bp06dsviGlpaXdvn07OTlZS5758+dXVVWdPXtWfw18rkGg14/S0tJ58+YRBCEUCgMCAnJycjTz1NfXx8XFubm58Xg8e3v7yMjIoqIi/FR6ejq1yPbgwYPo6GgbGxv2ez+2AAAUkUlEQVQ7O7u5c+dWVFRQJXR2dm7dunXcuHGWlpbDhw8PCwvDny42VQw19EPGgYxNJyQnJ+MMI0eOzM/PDwkJsbKysrS0DAoKunr1Ks6zY8cOnIcKOhcuXMApI0aMoJfT2tp69epV/JTh15+Li4vr6urwRdZ69NFHH4WGhpaUlLz33ntaymlsbPzggw88PT15PJ6tre2sWbOuXLmCn2I5rpA+Rs7PP/+MELK1tV2zZo2rqyuPxxs9enRcXBz9rl4IoaqqqjVr1qSlpWmfIXz55ZcRQj/88EOf2gB6RYLeRUVFRUVF6cx27949GxsbsVh88eJFlUpVUlISGhrq5ubG5/OpPDU1NaNHj3Z0dDx79qxKpbp161ZgYKCFhUVubi6VJyIiAiEUERGRm5vb0tJy6dIlgUAwadIkKsPy5csJgrh48WJbW5tcLl+7di1C6MqVK+yrYEMsFg8bNqxPL0EIffvtt316CYYPub29nZGipRNIkpRIJEKhcMqUKThPfn7++PHjeTxednY2lUcoFL7yyiv0V/n6+uJlTC15sKCgoOHDh+fl5fXjiEiSxJtGdGb76quvEEKffPIJIz0/P58gCPx3fX29q6srQujIkSM4hVqMxWpra93d3R0dHTMyMpRK5d27dyMjIzkczoEDB6g8OrtULyMH1+Lk5LR48eKKioqmpqYvv/xSKBSOHTtWoVBQ2aRS6apVq+g9sH37ds3SlEolQiggIIBN1Sw/p88zCPTasBxA+FIbJ06coFKqq6v5fD490C9ZsgQhdPToUSqltraWz+f7+vpSKfijgrejUQ1ACNXX1+OH7u7uU6dOpVc9duxYKtCzqYKNoRDotXQCSZL4LPjGjRtUSklJCUJIIpFQKQMJ9IGBgba2tn39B0lhGeiTkpIQQvv372ek0wM9SZJ5eXlcLlcoFP7yyy+kRqBfunQpQujYsWNUSkdHh4uLi0AgkMvlOEVnl+pl5EilUoSQu7t7V1cXlYi3TiYkJOCHqampHh4eLS0t+KGWQE+SJIfDGTNmDJuqIdDrBFM3enDhwgWEEB7omIuLy9ixY+l50tPTzczM6FsJnZycvL29CwsLGdd9nDRpEvU3PpurqanBD2fOnJmbm/v2229fu3YNz9jcvXt3+vTpfa1i6NPSCZhQKMTf7jEfHx8XF5fi4uLa2tqB156dnf348eMpU6YMvCgt8IQVdRvb3kyePDk5Obm1tVUmk7W3tzOePXXqFEJozpw5VAqfzw8JCWlvb2fMe2jpUr2MHKFQiBCaMWMGfRIsLCwM/T4D8/Dhw3Xr1qWlpeGcOpmbm2seL+gfCPQD1dnZqVKpLCws8IXOKQ4ODvQ8SqVSrVYTBEH/zQue1rx37x79hQRBUH/zeDyEELUBcf/+/YcPH66srAwJCbG2tp45cyb+nPe1iqFPSydgNjY2jJfgDn/06NHgt04/8O/pqNvYahEXFxcdHX3r1i3GLkz8pltYWDDmu/G+F7lcTk/srUv1NXLwxZ/t7OzoifhNqa+vRwjhyaXp06dTVeDtlQkJCfhheXk5/bXd3d2wQUBfINAPFJ/Pt7Ky6ujoaGlpoafT16D4fL6NjY25uTn9Wy0lKCiIZV34s3H58mWFQpGenk6SZGRk5KeffqrHKp4VjY2N5B9/b4lDPPX/1czM7MmTJ/QMCoWCUYhx7ybo7OyMEMKT0TodPHjQy8srLS0NT3dgfD6fIIiOjg6VSkXPjH/y5uTkxKZkfY0cvPTN+EaF3xT8j2f16tWMwhlTN2PGjKFe2NzcTJIk7iIwcBDo9WDWrFno9wkcrKGh4e7du/Q8kZGR3d3d1M4QbPfu3aNGjWK/WdjGxqa0tBQhxOVyX331VbyngtqCppcqnhUdHR34F6TYzZs3a2pqJBIJFRrw7b+pDHK5/OHDh4xCLC0tqX8GXl5eqampg9zqP8C7y1nOjYhEopMnTwqFws8//5yePn/+fIQQfRtiZ2dnVlaWQCCgzyVqp5eRM3v2bLFYfOHCBfpmUPzb13nz5rEshILfO80N+KB/INDrwSeffDJ8+PD4+PhLly61tLTcuXMnJiaGMZOzc+dOT0/PZcuWnT9/XqlUPn78OCUl5eOPP05OTu7Txr533nmnpKSks7Pz0aNHSUlJJEkGBwfrt4pnAkEQmzZtysvLa21tLSgoiImJ4fF4e/fupTKEhobW1NR89tlnLS0tFRUVf/7zn+mTadif/vSnsrKy3377LS8vr7KyMiAgAKcHBwfb2dkN9s3FJBKJg4NDcXExy/ze3t4pKSmMxJ07d7q7u8fHx2dmZqpUqrKystdff722tnbv3r30Hy5px2bkxMTEcDic+/fv91YIn88/ePBgY2PjwoUL7927p1Aovvrqq507d/r5+cXFxbFsCQVv7uztF1Wgzwa0lGvq2K/m3717d968edbW1njjWmZmJnWtm7feegvnwfudPTw8uFyuvb19aGjopUuX8FOMG6Ft3ryZ/OO8xJw5c0iSLCoqio2NffHFF/E++smTJx84cECtVlPN0FKFTj1eeIS+S08L1PddN9TqArZ48WKWnUCSpEQiEYvFd+7ckUqlVlZWAoEgMDAwJyeHXr5CoVi+fLmzs7NAIPD398/Pz/f19cXlrF+/HucpLS0NCAgQCoWurq703S8BAQEG2HVDkuSmTZvMzc2rq6vxQzyXTelx08vKlSsZe4caGhri4+Pd3d25XC5BEFKpNCsrCz/Fvkt1jpzg4GCRSNTd3a39iHJzc6VSKUEQPB5v3Lhx27Zta2tr08wWGxvLGGlSqZSeQSaTicXiJ0+eaK8Og103OkGg1wYGEEv9CPQDgQO9warrK/aBXqFQiMXi2NjYwW7SADU1NQkEguXLlxumuqKiIg6HQ98zqh18TnWCqRsAjIYgiIyMjBMnTuzfv9/YbekVSZJxcXHW1tbbt283QHWVlZWRkZEbN25cuHChAap7TkCgB8CYJkyYUFBQcP78+ebmZmO3pWd1dXWVlZVZWVkst/EMUEpKSmJiYmJiogHqen5AoH9ecHq3bds2Y7eOLXyNmuLi4urqag6Hs2XLFmO3SA/c3NwyMzOtra2N3ZCeOTk55eTkeHt7G6a63bt3w7m83pnaZgzQG7KXu/w8W9auXYuv8AMAYA/O6AEAwMRBoAcAABMHgR4AAEwcBHoAADBxEOgBAMDEcUxjM8YgkclkJ06cMHYrAAA6REVFfffdd8ZuxdAF2yt1mDx58vvvv2/sVgx10dHR8fHxg32njmdFXl7eX//6V3whBGAAe/bsMXYThjoI9DqMHDlywYIFxm7FUBcdHT1lyhToKMpf//pX6A2DgXN5nWCOHgAATBwEegAAMHEQ6AEAwMRBoAcAABMHgX4QiUQi+kUizczMbG1tJRLJqlWrCgsLjd06MHT9+uuv4eHhzc3NDQ0N1PiZMGEC/XasCCH6sxwOZ+LEicZqMBvh4eEcDmfHjh30xA0bNsD2JAOAQD+IWlpabty4gRCKiIggSbKrq6u0tPTjjz8uLS2dOHHim2++2dbWZuw2giGnqKho4sSJoaGh1tbWI0aMIEkS3wa9qKgoPj6enhM/m5eXh28uWFBQYKQm63b48OEe71W5YsWKjRs3JiQkGL5JzxUI9IYzbNgwR0fHiIiIH3/88cMPPzx06NCiRYvgB2t9JRKJ/P39n93ytWtubg4LC3vttdfeffddejqfz7ezs0tJSTl27Jix2tZvNTU18fHxb7zxhuZTnp6ep06dSkxMPH78uOEb9vyAQG8cu3bt8vPzO3PmzDfffGPstoAhJCkpSS6Xb926lZFuYWFx9OhRMzOz2NjYsrIyo7St31asWCGTyUJDQ3t8ViKRREVFrVmzpru728ANe35AoDcODoeDT9k+//xzY7cFDBUkSR48eNDPz8/FxUXzWalUumXLFpVKJZPJGJP1Q1laWtrt27eTk5O15Jk/f35VVdXZs2cN1qrnDQR6o8HzA9euXevq6sIp9fX1cXFxbm5uPB7P3t4+MjKyqKgIP5Wenk6tuT148CA6OtrGxsbOzm7u3LkVFRVUmZ2dnVu3bh03bpylpeXw4cPDwsLOnDnz9OlTKoOWKgygsbHxgw8+8PT05PF4tra2s2bNunLlCn5qx44d+OioaZMLFy7glBEjRuAUfB/B1tbWq1ev4qfMzc2pdA6HM3LkyPz8/JCQECsrK0tLy6CgoKtXrw68fIMpLi6uq6uTSCS9Zfjoo49CQ0NLSkree+89LeVo6WeWAwnpaahUVVWtWbMmLS3NyspKS7aXX34ZIfTDDz/0tXzAFgl6FxUVFRUVNZAS6IuxDO3t7fgtqKmpIUmypqZm9OjRjo6OZ8+eValUt27dCgwMtLCwyM3NpV4SERGBS8vNzW1pabl06ZJAIJg0aRKVYfny5QRBXLx4sa2tTS6X47vuXblyBT/Lpor+QQh9++232vPU1ta6u7s7OjpmZGQolcq7d+9GRkZyOJwDBw5QeYRC4SuvvEJ/la+vL15p1JIHk0gkQqFwypQpuHPy8/PHjx/P4/Gys7P1Un5QUNDw4cPz8vK0HyZJkngbic5smr766iuE0CeffMJIz8/PJwgC/11fX+/q6ooQOnLkCE6hFmMxNv2scyDpa6hIpdJVq1bRj2779u2a2ZRKJUIoICCgT4VTBv45NXkQ6LUZ1EBPbbnBgX7JkiUIoaNHj1IZamtr+Xy+r68vlYI/nxkZGfQWIoTq6+vxQ3d396lTp9JrGTt2LBXo2VTRP2wC/dKlSxFCx44do1I6OjpcXFwEAoFcLscpAwz0CKEbN25QKSUlJQghiUSi5bXsyw8MDLS1tWUT6fod6JOSkhBC+/fvZ6TTAz1Jknl5eVwuVygU/vLLL6RGoGfTzzoHkl6GSmpqqoeHR0tLC36oJdCTJMnhcMaMGcO+cDoI9DrB1I3R1NbWIoS4XC6eOkhPTzczM5s7dy6VwcnJydvbu7CwsKqqiv7CSZMmUX/jk7uamhr8cObMmbm5uW+//fa1a9fwjM3du3enT5+On2VfxWA4deoUQmjOnDlUCp/PDwkJaW9v19d3dqFQiCcBMB8fHxcXl+LiYtzVA5Sdnf348eNBvUInnnnncrnas02ePDk5Obm1tVUmk1HfCyns+1nLQBr4UHn48OG6devS0tKEQiGb/Obm5prHAvQFAr3R5OTkIISmTJnC5XI7OzuVSqVarSYIgv4TmJ9//hkhdO/ePfoLCYKg/ubxeAghtVqNH+7fv//w4cOVlZUhISHW1tYzZ87EH3uEUJ+q0Dtcu4WFBWOu1tHRESEkl8v1UouNjQ0jxcHBASH06NEjvZQ/2CwsLBBC1JqNFnFxcdHR0bdu3WLswuxTP/c2kPQyVPDE0fTp06mX4+2VCQkJ+GF5eTk9f3d3t0AgYFMy6AcI9MahVqv379+PEFq9ejVCiM/n29jYmJubd3V1aX7tCgoKYlks/jhdvnxZoVCkp6eTJBkZGfnpp5/qsYr+4fP5BEF0dHSoVCp6el1dHULIyckJPzQzM3vy5Ak9g0KhYBTF4XB6q6WxsZH84+8ScIjH4X7g5Q82Z2dnhBCesNbp4MGDXl5eaWlpeEoEY9nP2ullqKxevZrxQsbUzZgxY6jMzc3NJEniwweDAQK9cWzcuPH69evz58+XyWQ4JTIysru7m9olgu3evXvUqFHs9xfb2NiUlpYihLhc7quvvoq3WFC71vRSRb/Nnz8fIUTfQtfZ2ZmVlSUQCKRSKU5xdnaurq6mMsjl8ocPHzLKsbS0pIK1l5dXamoq9VRHRwf+ESl28+bNmpoaiURCRZABlj/YXnrpJYQQy7kRkUh08uRJoVDI2KHLpp91MvBQwW8KPnwwGCDQG45arX706NHp06dDQkKSkpKWLVt29OhR6vxx586dnp6ey5YtO3/+vFKpfPz4cUpKyscff5ycnNynTX7vvPNOSUlJZ2fno0ePkpKSSJIMDg7WbxX9s3PnTnd39/j4+MzMTJVKVVZW9vrrr9fW1u7duxdPLCCEQkNDa2pqPvvss5aWloqKij//+c/UyTjlT3/6U1lZ2W+//ZaXl1dZWRkQEEA9RRDEpk2b8vLyWltbCwoKYmJieDze3r17qQwDKT84ONjOzu7atWv675rfSSQSBweH4uJilvm9vb1TUlIYiWz6WSc2QyUmJobD4dy/f59lmVrgjZu9/aIK6MGAlnJN3QBX8xnLUBwOhyAIHx+flStXFhYWaubH2589PDy4XK69vX1oaOilS5fwU3l5efSiNm/eTP5xjmLOnDkkSRYVFcXGxr744ot4H/3kyZMPHDigVqvZVDEQiMWuG5IkGxoa4uPj3d3duVwuQRBSqTQrK4ueQaFQLF++3NnZWSAQ+Pv75+fn+/r64gNcv349zlNaWhoQECAUCl1dXekbVCQSiVgsvnPnjlQqtbKyEggEgYGBOTk5+io/ICBgsHfdkCS5adMmc3Pz6upq/LC+vp7+Lve46WXlypWMjUNa+pnlQCJZDJXg4GCRSNTd3a3zoGJjYxlhRyqV0jPIZDKxWPzkyRO23fRHsOtGJwj02sAAYolloB9UONAbtw3YQAK9QqEQi8WxsbH6bZLeNTU1CQSC5cuXD7yooqIiDodD3w/aV/A51QmmbgAYQgiCyMjIOHHiBF6rH5pIkoyLi7O2tt6+ffsAi6qsrIyMjNy4cePChQv10jbQIwj0AAwtEyZMKCgoOH/+fHNzs7Hb0rO6urrKysqsrCyW23i0SElJSUxMTExM1EvDQG8g0INnHr5GTXFxcXV1NYfD2bJli7FbNFBubm6ZmZnW1tbGbkjPnJyccnJyvL29B17U7t274VzeAAx6zSYABsPatWvxVX0AAD2CM3oAADBxEOgBAMDEQaAHAAATB4EeAABMHCzG6lBVVQW3LWaD8ZPL5xnuChg2BlNVVTVy5Ehjt2JI45B//AE0oJPJZCdOnDB2KwAAOkRFRX333XfGbsXQBYEeAABMHMzRAwCAiYNADwAAJg4CPQAAmDgI9AAAYOL+H5sIcc4d1/4AAAAAAElFTkSuQmCC",
"text/plain": [
""
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# `vocab_size` is `VOCAB_SIZE + 1` since `0` is used additionally for padding.\n",
"int_model = create_model(vocab_size=VOCAB_SIZE + 1, num_labels=4, vectorizer=int_vectorize_layer)\n",
"\n",
"tf.keras.utils.plot_model(int_model, show_shapes=True)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:38:39.461597Z",
"iopub.status.busy": "2024-08-16T07:38:39.461280Z",
"iopub.status.idle": "2024-08-16T07:39:00.327925Z",
"shell.execute_reply": "2024-08-16T07:39:00.327234Z"
},
"id": "C4UA3h8GAUFs"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 2:08 - loss: 1.4045 - accuracy: 0.1875"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 5/200 [..............................] - ETA: 2s - loss: 1.4005 - accuracy: 0.1750 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 10/200 [>.............................] - ETA: 2s - loss: 1.3919 - accuracy: 0.2250"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 16/200 [=>............................] - ETA: 2s - loss: 1.3845 - accuracy: 0.2793"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 22/200 [==>...........................] - ETA: 1s - loss: 1.3899 - accuracy: 0.2614"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 27/200 [===>..........................] - ETA: 1s - loss: 1.3885 - accuracy: 0.2639"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 33/200 [===>..........................] - ETA: 1s - loss: 1.3880 - accuracy: 0.2718"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 39/200 [====>.........................] - ETA: 1s - loss: 1.3875 - accuracy: 0.2716"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 45/200 [=====>........................] - ETA: 1s - loss: 1.3868 - accuracy: 0.2694"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 51/200 [======>.......................] - ETA: 1s - loss: 1.3861 - accuracy: 0.2739"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 57/200 [=======>......................] - ETA: 1s - loss: 1.3850 - accuracy: 0.2834"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 63/200 [========>.....................] - ETA: 1s - loss: 1.3836 - accuracy: 0.2857"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 69/200 [=========>....................] - ETA: 1s - loss: 1.3836 - accuracy: 0.2840"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 75/200 [==========>...................] - ETA: 1s - loss: 1.3819 - accuracy: 0.2933"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 81/200 [===========>..................] - ETA: 1s - loss: 1.3811 - accuracy: 0.2986"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 87/200 [============>.................] - ETA: 1s - loss: 1.3797 - accuracy: 0.3046"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 93/200 [============>.................] - ETA: 1s - loss: 1.3777 - accuracy: 0.3135"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 99/200 [=============>................] - ETA: 0s - loss: 1.3763 - accuracy: 0.3157"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"105/200 [==============>...............] - ETA: 0s - loss: 1.3746 - accuracy: 0.3179"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"111/200 [===============>..............] - ETA: 0s - loss: 1.3710 - accuracy: 0.3229"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"117/200 [================>.............] - ETA: 0s - loss: 1.3683 - accuracy: 0.3264"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"123/200 [=================>............] - ETA: 0s - loss: 1.3640 - accuracy: 0.3356"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"129/200 [==================>...........] - ETA: 0s - loss: 1.3587 - accuracy: 0.3435"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"134/200 [===================>..........] - ETA: 0s - loss: 1.3550 - accuracy: 0.3489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"140/200 [====================>.........] - ETA: 0s - loss: 1.3505 - accuracy: 0.3560"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"146/200 [====================>.........] - ETA: 0s - loss: 1.3441 - accuracy: 0.3645"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"152/200 [=====================>........] - ETA: 0s - loss: 1.3364 - accuracy: 0.3711"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"158/200 [======================>.......] - ETA: 0s - loss: 1.3302 - accuracy: 0.3770"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"164/200 [=======================>......] - ETA: 0s - loss: 1.3209 - accuracy: 0.3822"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"170/200 [========================>.....] - ETA: 0s - loss: 1.3127 - accuracy: 0.3882"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"176/200 [=========================>....] - ETA: 0s - loss: 1.3050 - accuracy: 0.3938"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"182/200 [==========================>...] - ETA: 0s - loss: 1.2949 - accuracy: 0.4004"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"188/200 [===========================>..] - ETA: 0s - loss: 1.2873 - accuracy: 0.4041"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"194/200 [============================>.] - ETA: 0s - loss: 1.2764 - accuracy: 0.4106"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - ETA: 0s - loss: 1.2680 - accuracy: 0.4155"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 3s 11ms/step - loss: 1.2680 - accuracy: 0.4155 - val_loss: 0.9306 - val_accuracy: 0.6119\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 2/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 2s - loss: 1.0030 - accuracy: 0.5625"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.9912 - accuracy: 0.5625"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.9671 - accuracy: 0.5841"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.9539 - accuracy: 0.5905"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.9303 - accuracy: 0.5975"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.9321 - accuracy: 0.5978"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.9140 - accuracy: 0.6064"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.9024 - accuracy: 0.6090"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.8936 - accuracy: 0.6110"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.8870 - accuracy: 0.6148"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.8847 - accuracy: 0.6189"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.8832 - accuracy: 0.6203"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.8723 - accuracy: 0.6259"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.8654 - accuracy: 0.6317"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.8663 - accuracy: 0.6301"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.8579 - accuracy: 0.6326"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 96/200 [=============>................] - ETA: 0s - loss: 0.8536 - accuracy: 0.6344"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"102/200 [==============>...............] - ETA: 0s - loss: 0.8516 - accuracy: 0.6360"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.8405 - accuracy: 0.6432"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"114/200 [================>.............] - ETA: 0s - loss: 0.8387 - accuracy: 0.6450"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.8353 - accuracy: 0.6458"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/200 [=================>............] - ETA: 0s - loss: 0.8302 - accuracy: 0.6486"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"132/200 [==================>...........] - ETA: 0s - loss: 0.8271 - accuracy: 0.6522"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"138/200 [===================>..........] - ETA: 0s - loss: 0.8269 - accuracy: 0.6517"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"144/200 [====================>.........] - ETA: 0s - loss: 0.8228 - accuracy: 0.6554"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.8148 - accuracy: 0.6592"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"156/200 [======================>.......] - ETA: 0s - loss: 0.8123 - accuracy: 0.6615"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"162/200 [=======================>......] - ETA: 0s - loss: 0.8062 - accuracy: 0.6640"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"168/200 [========================>.....] - ETA: 0s - loss: 0.7997 - accuracy: 0.6656"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"174/200 [=========================>....] - ETA: 0s - loss: 0.7954 - accuracy: 0.6661"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.7902 - accuracy: 0.6679"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"186/200 [==========================>...] - ETA: 0s - loss: 0.7879 - accuracy: 0.6700"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.7834 - accuracy: 0.6722"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.7799 - accuracy: 0.6735"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.7792 - accuracy: 0.6737 - val_loss: 0.6409 - val_accuracy: 0.7419\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 3/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.6403 - accuracy: 0.7188"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.7084 - accuracy: 0.7188"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.6703 - accuracy: 0.7308"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.6543 - accuracy: 0.7451"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.6303 - accuracy: 0.7538"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.6325 - accuracy: 0.7550"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.6165 - accuracy: 0.7584"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.6143 - accuracy: 0.7616"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.6145 - accuracy: 0.7557"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.6115 - accuracy: 0.7580"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.6136 - accuracy: 0.7567"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.6138 - accuracy: 0.7565"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.6050 - accuracy: 0.7590"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.6023 - accuracy: 0.7623"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.6041 - accuracy: 0.7614"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.6014 - accuracy: 0.7630"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/200 [=============>................] - ETA: 0s - loss: 0.6000 - accuracy: 0.7632"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"103/200 [==============>...............] - ETA: 0s - loss: 0.6011 - accuracy: 0.7621"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.5952 - accuracy: 0.7663"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"115/200 [================>.............] - ETA: 0s - loss: 0.5938 - accuracy: 0.7682"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.5921 - accuracy: 0.7699"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"127/200 [==================>...........] - ETA: 0s - loss: 0.5876 - accuracy: 0.7714"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/200 [==================>...........] - ETA: 0s - loss: 0.5851 - accuracy: 0.7735"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.5870 - accuracy: 0.7732"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/200 [====================>.........] - ETA: 0s - loss: 0.5867 - accuracy: 0.7737"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.5794 - accuracy: 0.7769"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"156/200 [======================>.......] - ETA: 0s - loss: 0.5783 - accuracy: 0.7780"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"162/200 [=======================>......] - ETA: 0s - loss: 0.5754 - accuracy: 0.7780"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"168/200 [========================>.....] - ETA: 0s - loss: 0.5737 - accuracy: 0.7781"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"174/200 [=========================>....] - ETA: 0s - loss: 0.5702 - accuracy: 0.7802"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.5659 - accuracy: 0.7819"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"186/200 [==========================>...] - ETA: 0s - loss: 0.5659 - accuracy: 0.7819"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.5639 - accuracy: 0.7837"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.5619 - accuracy: 0.7846"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.5617 - accuracy: 0.7848 - val_loss: 0.5409 - val_accuracy: 0.8025\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 4/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.4108 - accuracy: 0.9375"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.5307 - accuracy: 0.8259"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.4952 - accuracy: 0.8341"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.4839 - accuracy: 0.8289"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.4703 - accuracy: 0.8413"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.4712 - accuracy: 0.8417"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.4564 - accuracy: 0.8480"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.4561 - accuracy: 0.8459"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.4549 - accuracy: 0.8438"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.4501 - accuracy: 0.8449"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.4508 - accuracy: 0.8458"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 66/200 [========>.....................] - ETA: 1s - loss: 0.4482 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 72/200 [=========>....................] - ETA: 1s - loss: 0.4450 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 78/200 [==========>...................] - ETA: 1s - loss: 0.4401 - accuracy: 0.8514"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 84/200 [===========>..................] - ETA: 1s - loss: 0.4389 - accuracy: 0.8523"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/200 [============>.................] - ETA: 0s - loss: 0.4383 - accuracy: 0.8524"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 96/200 [=============>................] - ETA: 0s - loss: 0.4404 - accuracy: 0.8499"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"102/200 [==============>...............] - ETA: 0s - loss: 0.4452 - accuracy: 0.8477"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.4391 - accuracy: 0.8501"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"114/200 [================>.............] - ETA: 0s - loss: 0.4400 - accuracy: 0.8514"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.4393 - accuracy: 0.8523"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"125/200 [=================>............] - ETA: 0s - loss: 0.4346 - accuracy: 0.8540"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"131/200 [==================>...........] - ETA: 0s - loss: 0.4337 - accuracy: 0.8526"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"137/200 [===================>..........] - ETA: 0s - loss: 0.4340 - accuracy: 0.8515"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"143/200 [====================>.........] - ETA: 0s - loss: 0.4335 - accuracy: 0.8512"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"149/200 [=====================>........] - ETA: 0s - loss: 0.4288 - accuracy: 0.8538"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"155/200 [======================>.......] - ETA: 0s - loss: 0.4273 - accuracy: 0.8548"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"161/200 [=======================>......] - ETA: 0s - loss: 0.4235 - accuracy: 0.8564"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"167/200 [========================>.....] - ETA: 0s - loss: 0.4209 - accuracy: 0.8567"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"173/200 [========================>.....] - ETA: 0s - loss: 0.4213 - accuracy: 0.8566"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"179/200 [=========================>....] - ETA: 0s - loss: 0.4175 - accuracy: 0.8579"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"185/200 [==========================>...] - ETA: 0s - loss: 0.4168 - accuracy: 0.8579"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"191/200 [===========================>..] - ETA: 0s - loss: 0.4162 - accuracy: 0.8583"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"197/200 [============================>.] - ETA: 0s - loss: 0.4153 - accuracy: 0.8587"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.4142 - accuracy: 0.8589 - val_loss: 0.4931 - val_accuracy: 0.8125\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 5/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.3039 - accuracy: 0.9062"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.4040 - accuracy: 0.8527"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.3704 - accuracy: 0.8702"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.3646 - accuracy: 0.8766"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.3510 - accuracy: 0.8850"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.3476 - accuracy: 0.8881"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.3342 - accuracy: 0.8961"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.3331 - accuracy: 0.8961"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.3328 - accuracy: 0.8954"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.3279 - accuracy: 0.8983"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.3275 - accuracy: 0.8975"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.3262 - accuracy: 0.8983"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.3182 - accuracy: 0.9007"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.3178 - accuracy: 0.9007"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.3186 - accuracy: 0.8993"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.3209 - accuracy: 0.8973"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/200 [=============>................] - ETA: 0s - loss: 0.3209 - accuracy: 0.8972"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"103/200 [==============>...............] - ETA: 0s - loss: 0.3236 - accuracy: 0.8962"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.3202 - accuracy: 0.8968"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"115/200 [================>.............] - ETA: 0s - loss: 0.3185 - accuracy: 0.8978"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.3164 - accuracy: 0.8982"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"127/200 [==================>...........] - ETA: 0s - loss: 0.3150 - accuracy: 0.9001"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/200 [==================>...........] - ETA: 0s - loss: 0.3132 - accuracy: 0.9004"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.3149 - accuracy: 0.8975"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/200 [====================>.........] - ETA: 0s - loss: 0.3160 - accuracy: 0.8976"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"151/200 [=====================>........] - ETA: 0s - loss: 0.3118 - accuracy: 0.8992"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"157/200 [======================>.......] - ETA: 0s - loss: 0.3105 - accuracy: 0.9003"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"163/200 [=======================>......] - ETA: 0s - loss: 0.3084 - accuracy: 0.9015"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/200 [========================>.....] - ETA: 0s - loss: 0.3063 - accuracy: 0.9026"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"175/200 [=========================>....] - ETA: 0s - loss: 0.3033 - accuracy: 0.9030"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.3009 - accuracy: 0.9037"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"187/200 [===========================>..] - ETA: 0s - loss: 0.3012 - accuracy: 0.9032"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"193/200 [===========================>..] - ETA: 0s - loss: 0.3004 - accuracy: 0.9038"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"199/200 [============================>.] - ETA: 0s - loss: 0.2991 - accuracy: 0.9044"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.2987 - accuracy: 0.9044 - val_loss: 0.4819 - val_accuracy: 0.8206\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 6/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.1769 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.2796 - accuracy: 0.9062"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.2597 - accuracy: 0.9207"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.2566 - accuracy: 0.9194"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.2555 - accuracy: 0.9237"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.2590 - accuracy: 0.9224"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.2512 - accuracy: 0.9215"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.2470 - accuracy: 0.9251"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.2449 - accuracy: 0.9254"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.2400 - accuracy: 0.9284"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.2375 - accuracy: 0.9298"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.2342 - accuracy: 0.9310"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.2291 - accuracy: 0.9328"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.2284 - accuracy: 0.9335"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.2276 - accuracy: 0.9353"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.2301 - accuracy: 0.9337"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/200 [=============>................] - ETA: 0s - loss: 0.2302 - accuracy: 0.9343"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"103/200 [==============>...............] - ETA: 0s - loss: 0.2312 - accuracy: 0.9336"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.2283 - accuracy: 0.9346"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"115/200 [================>.............] - ETA: 0s - loss: 0.2275 - accuracy: 0.9351"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.2262 - accuracy: 0.9347"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"127/200 [==================>...........] - ETA: 0s - loss: 0.2231 - accuracy: 0.9363"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/200 [==================>...........] - ETA: 0s - loss: 0.2217 - accuracy: 0.9368"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.2236 - accuracy: 0.9359"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/200 [====================>.........] - ETA: 0s - loss: 0.2238 - accuracy: 0.9360"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"151/200 [=====================>........] - ETA: 0s - loss: 0.2203 - accuracy: 0.9371"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"157/200 [======================>.......] - ETA: 0s - loss: 0.2194 - accuracy: 0.9367"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"163/200 [=======================>......] - ETA: 0s - loss: 0.2186 - accuracy: 0.9369"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/200 [========================>.....] - ETA: 0s - loss: 0.2188 - accuracy: 0.9362"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"175/200 [=========================>....] - ETA: 0s - loss: 0.2177 - accuracy: 0.9368"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.2150 - accuracy: 0.9373"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"186/200 [==========================>...] - ETA: 0s - loss: 0.2149 - accuracy: 0.9373"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.2146 - accuracy: 0.9370"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.2135 - accuracy: 0.9369"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.2133 - accuracy: 0.9369 - val_loss: 0.5010 - val_accuracy: 0.8112\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 7/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.1470 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.2119 - accuracy: 0.9509"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.2017 - accuracy: 0.9447"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.2050 - accuracy: 0.9441"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.1957 - accuracy: 0.9475"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.1946 - accuracy: 0.9496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.1827 - accuracy: 0.9527"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.1813 - accuracy: 0.9549"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.1837 - accuracy: 0.9515"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.1794 - accuracy: 0.9528"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.1770 - accuracy: 0.9534"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.1748 - accuracy: 0.9538"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.1722 - accuracy: 0.9546"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.1712 - accuracy: 0.9557"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.1706 - accuracy: 0.9551"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.1708 - accuracy: 0.9557"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/200 [=============>................] - ETA: 0s - loss: 0.1696 - accuracy: 0.9572"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"103/200 [==============>...............] - ETA: 0s - loss: 0.1712 - accuracy: 0.9551"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.1677 - accuracy: 0.9558"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"115/200 [================>.............] - ETA: 0s - loss: 0.1673 - accuracy: 0.9565"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.1666 - accuracy: 0.9571"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"127/200 [==================>...........] - ETA: 0s - loss: 0.1649 - accuracy: 0.9582"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/200 [==================>...........] - ETA: 0s - loss: 0.1640 - accuracy: 0.9579"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.1639 - accuracy: 0.9575"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/200 [====================>.........] - ETA: 0s - loss: 0.1653 - accuracy: 0.9567"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"151/200 [=====================>........] - ETA: 0s - loss: 0.1629 - accuracy: 0.9572"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"157/200 [======================>.......] - ETA: 0s - loss: 0.1616 - accuracy: 0.9566"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"163/200 [=======================>......] - ETA: 0s - loss: 0.1612 - accuracy: 0.9567"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/200 [========================>.....] - ETA: 0s - loss: 0.1617 - accuracy: 0.9569"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"175/200 [=========================>....] - ETA: 0s - loss: 0.1610 - accuracy: 0.9570"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.1593 - accuracy: 0.9575"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"187/200 [===========================>..] - ETA: 0s - loss: 0.1591 - accuracy: 0.9577"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"193/200 [===========================>..] - ETA: 0s - loss: 0.1591 - accuracy: 0.9577"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"199/200 [============================>.] - ETA: 0s - loss: 0.1576 - accuracy: 0.9585"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.1571 - accuracy: 0.9588 - val_loss: 0.5368 - val_accuracy: 0.8069\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 8/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.1025 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.1508 - accuracy: 0.9554"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.1510 - accuracy: 0.9543"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.1488 - accuracy: 0.9572"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.1423 - accuracy: 0.9600"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.1408 - accuracy: 0.9607"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 36/200 [====>.........................] - ETA: 1s - loss: 0.1387 - accuracy: 0.9609"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 42/200 [=====>........................] - ETA: 1s - loss: 0.1361 - accuracy: 0.9635"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 48/200 [======>.......................] - ETA: 1s - loss: 0.1316 - accuracy: 0.9642"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 54/200 [=======>......................] - ETA: 1s - loss: 0.1300 - accuracy: 0.9647"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 60/200 [========>.....................] - ETA: 1s - loss: 0.1273 - accuracy: 0.9651"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 66/200 [========>.....................] - ETA: 1s - loss: 0.1275 - accuracy: 0.9664"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 72/200 [=========>....................] - ETA: 1s - loss: 0.1243 - accuracy: 0.9674"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 78/200 [==========>...................] - ETA: 1s - loss: 0.1227 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 84/200 [===========>..................] - ETA: 1s - loss: 0.1221 - accuracy: 0.9691"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/200 [============>.................] - ETA: 0s - loss: 0.1209 - accuracy: 0.9694"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 96/200 [=============>................] - ETA: 0s - loss: 0.1211 - accuracy: 0.9691"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"102/200 [==============>...............] - ETA: 0s - loss: 0.1211 - accuracy: 0.9691"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.1193 - accuracy: 0.9693"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"114/200 [================>.............] - ETA: 0s - loss: 0.1195 - accuracy: 0.9693"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.1183 - accuracy: 0.9701"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/200 [=================>............] - ETA: 0s - loss: 0.1174 - accuracy: 0.9702"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"132/200 [==================>...........] - ETA: 0s - loss: 0.1162 - accuracy: 0.9704"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"138/200 [===================>..........] - ETA: 0s - loss: 0.1161 - accuracy: 0.9708"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"144/200 [====================>.........] - ETA: 0s - loss: 0.1172 - accuracy: 0.9703"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.1154 - accuracy: 0.9702"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"156/200 [======================>.......] - ETA: 0s - loss: 0.1148 - accuracy: 0.9704"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"162/200 [=======================>......] - ETA: 0s - loss: 0.1143 - accuracy: 0.9703"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"168/200 [========================>.....] - ETA: 0s - loss: 0.1153 - accuracy: 0.9693"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"174/200 [=========================>....] - ETA: 0s - loss: 0.1150 - accuracy: 0.9695"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.1137 - accuracy: 0.9696"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"186/200 [==========================>...] - ETA: 0s - loss: 0.1131 - accuracy: 0.9701"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.1133 - accuracy: 0.9701"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.1131 - accuracy: 0.9699"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.1126 - accuracy: 0.9702 - val_loss: 0.5629 - val_accuracy: 0.8069\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 9/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 1s - loss: 0.0646 - accuracy: 1.0000"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.0818 - accuracy: 0.9821"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.0840 - accuracy: 0.9784"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.0973 - accuracy: 0.9704"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.0951 - accuracy: 0.9700"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.0974 - accuracy: 0.9708"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.0983 - accuracy: 0.9679"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.0946 - accuracy: 0.9695"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.0937 - accuracy: 0.9707"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.0905 - accuracy: 0.9710"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.0883 - accuracy: 0.9723"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.0854 - accuracy: 0.9739"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.0829 - accuracy: 0.9760"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.0812 - accuracy: 0.9775"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 84/200 [===========>..................] - ETA: 1s - loss: 0.0806 - accuracy: 0.9784"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 90/200 [============>.................] - ETA: 1s - loss: 0.0801 - accuracy: 0.9788"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 96/200 [=============>................] - ETA: 0s - loss: 0.0799 - accuracy: 0.9795"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"102/200 [==============>...............] - ETA: 0s - loss: 0.0805 - accuracy: 0.9798"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"108/200 [===============>..............] - ETA: 0s - loss: 0.0791 - accuracy: 0.9806"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"114/200 [================>.............] - ETA: 0s - loss: 0.0794 - accuracy: 0.9800"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"120/200 [=================>............] - ETA: 0s - loss: 0.0786 - accuracy: 0.9807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"126/200 [=================>............] - ETA: 0s - loss: 0.0781 - accuracy: 0.9807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"132/200 [==================>...........] - ETA: 0s - loss: 0.0775 - accuracy: 0.9815"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"138/200 [===================>..........] - ETA: 0s - loss: 0.0789 - accuracy: 0.9810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"144/200 [====================>.........] - ETA: 0s - loss: 0.0792 - accuracy: 0.9809"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"150/200 [=====================>........] - ETA: 0s - loss: 0.0779 - accuracy: 0.9810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"156/200 [======================>.......] - ETA: 0s - loss: 0.0780 - accuracy: 0.9810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"162/200 [=======================>......] - ETA: 0s - loss: 0.0781 - accuracy: 0.9807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"168/200 [========================>.....] - ETA: 0s - loss: 0.0796 - accuracy: 0.9801"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"174/200 [=========================>....] - ETA: 0s - loss: 0.0790 - accuracy: 0.9806"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"180/200 [==========================>...] - ETA: 0s - loss: 0.0777 - accuracy: 0.9812"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"186/200 [==========================>...] - ETA: 0s - loss: 0.0781 - accuracy: 0.9807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"192/200 [===========================>..] - ETA: 0s - loss: 0.0782 - accuracy: 0.9805"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"198/200 [============================>.] - ETA: 0s - loss: 0.0782 - accuracy: 0.9804"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.0780 - accuracy: 0.9805 - val_loss: 0.6029 - val_accuracy: 0.8031\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 10/10\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/200 [..............................] - ETA: 2s - loss: 0.0703 - accuracy: 0.9688"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/200 [>.............................] - ETA: 1s - loss: 0.0834 - accuracy: 0.9866"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/200 [>.............................] - ETA: 1s - loss: 0.0757 - accuracy: 0.9856"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/200 [=>............................] - ETA: 1s - loss: 0.0807 - accuracy: 0.9836"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/200 [==>...........................] - ETA: 1s - loss: 0.0729 - accuracy: 0.9862"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/200 [===>..........................] - ETA: 1s - loss: 0.0665 - accuracy: 0.9889"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/200 [====>.........................] - ETA: 1s - loss: 0.0636 - accuracy: 0.9882"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/200 [=====>........................] - ETA: 1s - loss: 0.0648 - accuracy: 0.9869"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/200 [======>.......................] - ETA: 1s - loss: 0.0637 - accuracy: 0.9879"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/200 [=======>......................] - ETA: 1s - loss: 0.0622 - accuracy: 0.9881"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/200 [========>.....................] - ETA: 1s - loss: 0.0626 - accuracy: 0.9872"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/200 [=========>....................] - ETA: 1s - loss: 0.0621 - accuracy: 0.9879"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/200 [=========>....................] - ETA: 1s - loss: 0.0602 - accuracy: 0.9889"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 79/200 [==========>...................] - ETA: 1s - loss: 0.0588 - accuracy: 0.9893"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/200 [===========>..................] - ETA: 1s - loss: 0.0588 - accuracy: 0.9890"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 91/200 [============>.................] - ETA: 0s - loss: 0.0586 - accuracy: 0.9890"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/200 [=============>................] - ETA: 0s - loss: 0.0590 - accuracy: 0.9884"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"103/200 [==============>...............] - ETA: 0s - loss: 0.0603 - accuracy: 0.9882"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/200 [===============>..............] - ETA: 0s - loss: 0.0594 - accuracy: 0.9880"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"115/200 [================>.............] - ETA: 0s - loss: 0.0589 - accuracy: 0.9883"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/200 [=================>............] - ETA: 0s - loss: 0.0576 - accuracy: 0.9889"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"127/200 [==================>...........] - ETA: 0s - loss: 0.0569 - accuracy: 0.9892"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/200 [==================>...........] - ETA: 0s - loss: 0.0561 - accuracy: 0.9894"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"139/200 [===================>..........] - ETA: 0s - loss: 0.0565 - accuracy: 0.9890"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/200 [====================>.........] - ETA: 0s - loss: 0.0570 - accuracy: 0.9884"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"151/200 [=====================>........] - ETA: 0s - loss: 0.0568 - accuracy: 0.9884"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"157/200 [======================>.......] - ETA: 0s - loss: 0.0567 - accuracy: 0.9883"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"163/200 [=======================>......] - ETA: 0s - loss: 0.0565 - accuracy: 0.9883"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/200 [========================>.....] - ETA: 0s - loss: 0.0577 - accuracy: 0.9878"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"175/200 [=========================>....] - ETA: 0s - loss: 0.0574 - accuracy: 0.9879"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/200 [==========================>...] - ETA: 0s - loss: 0.0566 - accuracy: 0.9881"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"187/200 [===========================>..] - ETA: 0s - loss: 0.0563 - accuracy: 0.9881"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"193/200 [===========================>..] - ETA: 0s - loss: 0.0567 - accuracy: 0.9879"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"199/200 [============================>.] - ETA: 0s - loss: 0.0565 - accuracy: 0.9881"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"200/200 [==============================] - 2s 10ms/step - loss: 0.0563 - accuracy: 0.9881 - val_loss: 0.6394 - val_accuracy: 0.8037\n"
]
}
],
"source": [
"\n",
"int_model.compile(\n",
" loss=losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" optimizer='adam',\n",
" metrics=['accuracy'])\n",
"int_history = int_model.fit(raw_train_ds, validation_data=raw_val_ds, epochs=10)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:00.331608Z",
"iopub.status.busy": "2024-08-16T07:39:00.331325Z",
"iopub.status.idle": "2024-08-16T07:39:00.574476Z",
"shell.execute_reply": "2024-08-16T07:39:00.573743Z"
},
"id": "hHTVwxNAovn7"
},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'CE/token')"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGwCAYAAABVdURTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJiklEQVR4nOzdZ3RU5dqH8Wsy6b1XEkhICKGF3kFKpCkKUhQ4AqLYQEXUo3hE5fgeUEFBmmKvFEUQBATpHamhE3oCpJHe28y8H3YyIZCEBDKZlPu31qzM7DL7jsHMP89+ikqn0+kQQgghhKgjTIxdgBBCCCFEVZJwI4QQQog6RcKNEEIIIeoUCTdCCCGEqFMk3AghhBCiTpFwI4QQQog6RcKNEEIIIeoUU2MXUN20Wi3R0dHY2dmhUqmMXY4QQgghKkCn05Geno63tzcmJuW3zdS7cBMdHY2vr6+xyxBCCCHEPbh27RoNGjQo95h6F27s7OwA5T+Ovb29kasRQgghREWkpaXh6+ur/xwvT70LN0W3ouzt7SXcCCGEELVMRbqUSIdiIYQQQtQpEm6EEEIIUadIuBFCCCFEnVLv+twIIYSo2TQaDfn5+cYuQxiBubn5XYd5V4SEGyGEEDWCTqcjNjaWlJQUY5cijMTExAR/f3/Mzc3v630k3AghhKgRioKNu7s71tbWMtFqPVM0yW5MTAx+fn739fOXcCOEEMLoNBqNPti4uLgYuxxhJG5ubkRHR1NQUICZmdk9v490KBZCCGF0RX1srK2tjVyJMKai21Eajea+3kfCjRBCiBpDbkXVb1X185dwI4QQQog6RcKNEEIIIeoUCTdCCCHEfejVqxdTpkwpc3+jRo2YN2/efV3j+++/x9HR8b7eoz6R0VJVKSNeeXi2MHYlQgghaohDhw5hY2Nj7DLqFWm5qSpn1sInTWHdq8auRAghRA3i5uYmo8CqmYSbquLbSfl6/SAkXDRuLUIIUQfodDqy8gqq/aHT6Spda0FBAZMnT8bBwQFXV1emT5+uf5/bb0upVCq+/vprhg4dirW1NUFBQaxdu7bS1/z8889p3Lgx5ubmBAcH89NPP5X4b/f+++/j5+eHhYUF3t7evPzyy/r9ixcvJigoCEtLSzw8PBg+fHilr1+TyW2pqmLnAYF94cLfcHwZ9J1u7IqEEKJWy87X0OzdTdV+3TP/7Y+1eeU+Hn/44QeefvppDh48yOHDh3n22Wfx8/Nj4sSJpR4/Y8YMPv74Y2bPns2CBQsYM2YMkZGRODs7V+h6q1ev5pVXXmHevHmEhYWxbt06nnrqKRo0aEDv3r35/fffmTt3LsuXL6d58+bExsZy/PhxAA4fPszLL7/MTz/9RNeuXUlKSmL37t2V+n5rOgk3VSl0lBJuTqyA3v+BKlj8SwghRM3n6+vL3LlzUalUBAcHc/LkSebOnVtmuBk/fjyjRo0CYObMmcyfP5+DBw8yYMCACl1vzpw5jB8/nhdffBGAqVOncuDAAebMmUPv3r2JiorC09OTsLAwzMzM8PPzo2PHjgBERUVhY2PDww8/jJ2dHQ0bNqRNmzZV8F+h5pBwU5WCB4GFA6Reg8g94N/T2BUJIUStZWWm5sx/+xvlupXVuXPnEhPQdenShU8++aTMmXZbtWqlf25jY4O9vT3x8fEANG/enMjISAB69OjBX3/9dcf5Z8+e5dlnny2xrVu3bnz22WcAjBgxgnnz5hEQEMCAAQMYNGgQgwcPxtTUlAcffJCGDRvq9w0YMEB/i6yukKaFqmRmCS2GKs+PLzduLUIIUcupVCqszU2r/VEdsyTfvm6SSqVCq9UCsGHDBsLDwwkPD+frr7++p/f39fUlIiKCxYsXY2VlxYsvvkjPnj3Jz8/Hzs6Oo0ePsmzZMry8vHj33XcJDQ2tU6uxS7ipaqFKMyNn1kBepnFrEUIIUS3++eefEq8PHDhAUFAQanXlW4EaNmxIYGAggYGB+Pj4lHpMSEgIe/fuLbFt7969NGvWTP/aysqKwYMHM3/+fHbs2MH+/fs5efIkAKampoSFhfHxxx9z4sQJrl69yrZt2ypda00lt6Wqmm8ncA6ApMtw9k8IfcLYFQkhhDCwqKgopk6dynPPPcfRo0dZsGABn3zyicGu98YbbzBy5EjatGlDWFgYf/75J6tWrWLLli2AMumfRqOhU6dOWFtb8/PPP2NlZUXDhg1Zt24dly9fpmfPnjg5ObFhwwa0Wi3BwcEGq7e6SbipaiqV0nqz/X/KqCkJN0IIUeeNHTuW7OxsOnbsiFqt5pVXXrmjT0xVGjJkCJ999hlz5szhlVdewd/fn++++45evXoB4OjoyIcffsjUqVPRaDS0bNmSP//8ExcXFxwdHVm1ahXvv/8+OTk5BAUFsWzZMpo3b26wequbSncvA/prsbS0NBwcHEhNTcXe3t4wF0mOhM9aASp49RQ4NDDMdYQQoo7IycnhypUr+Pv7Y2lpaexyhJGU9++gMp/f0ufGEJwaQsPugA5O/GrsaoQQQoh6RcKNoRTdjjq+DOpX45gQQghhVBJuDKXZo2BqBQnn4cZRY1cjhBBC1BsSbgzF0h5CBivPjy8zbi1CCCFEPSLhxpCKbk2dWgkFucatRQghhKgnJNwYUkAvsPOC7GQ4X/2LvwkhhBD1kVHDza5duxg8eDDe3t6oVCr++OOPco9ftWoVDz74IG5ubtjb29OlSxc2barBocFEDa1GKs9lOQYhhBCiWhg13GRmZhIaGsqiRYsqdPyuXbt48MEH2bBhA0eOHKF3794MHjyYY8eOGbjS+xA6Wvl6YRNkJhi3FiGEEKIeMOoMxQMHDmTgwIEVPn7evHklXs+cOZM1a9bw559/1tzl2t2bgncbiD4Gp36HTs8ZuyIhhBCiTqvVfW60Wi3p6ek4OzuXeUxubi5paWklHtWuaDHN8KXVf20hhBAG1atXL6ZMmVLm/kaNGt3xx7kxVKaOinQVqclqdbiZM2cOGRkZjBw5ssxjZs2ahYODg/7h6+tbjRUWajEcTEwhJhziz1b/9YUQQhjNoUOHDLrOlLhTrQ03S5cuZcaMGfz666+4u7uXedy0adNITU3VP65du1aNVRaycYGg/spzmfNGCCHqFTc3N6ytrY1dRr1SK8PN8uXLeeaZZ/j1118JCwsr91gLCwvs7e1LPIyideGtqRO/glZjnBqEEKIWysorKPORk6+p0mPvVUFBAZMnT8bBwQFXV1emT59O0brUt98OUqlUfP311wwdOhRra2uCgoJYu3Ztme/95Zdf4u3tjVarLbH90UcfZcKECQBcunSJRx99FA8PD2xtbenQoQNbtmy55+/ndidPnqRPnz5YWVnh4uLCs88+S0ZGhn7/jh076NixIzY2Njg6OtKtWzciIyMBOH78OL1798bOzg57e3vatWvH4cOHq6y20hi1Q/G9WLZsGRMmTGD58uU89NBDxi6n4oL6g5UTpMfA5e0QWH4oE0IIoWj2btlTfvQOduO7pzrqX7f7YAvZ+aX/AdnJ35kVz3XRv+7+0XaSMvNKHHP1w3v7XPnhhx94+umnOXjwIIcPH+bZZ5/Fz8+PiRMnlnr8jBkz+Pjjj5k9ezYLFixgzJgxREZGltqHdMSIEbz00kts376dvn37ApCUlMTGjRvZsGEDABkZGQwaNIj//e9/WFhY8OOPPzJ48GAiIiLw8/O7p++pSGZmJv3796dLly4cOnSI+Ph4nnnmGSZPnsz3339PQUEBQ4YMYeLEiSxbtoy8vDwOHjyISqUCYMyYMbRp04bPP/8ctVpNeHg4ZmZm91XT3Rg13GRkZHDx4kX96ytXrhAeHo6zszN+fn5MmzaNGzdu8OOPPwLKrahx48bx2Wef0alTJ2JjYwGwsrLCwcHBKN9DhZmaK31vDn2lzHkj4UYIIeoMX19f5s6di0qlIjg4mJMnTzJ37twyw8348eMZNUpp0Z85cybz58/n4MGDDBgw4I5jnZycGDhwIEuXLtWHm5UrV+Lq6krv3r0BCA0NJTQ0VH/OBx98wOrVq1m7di2TJ0++r+9t6dKl5OTk8OOPP2JjYwPAwoULGTx4MB999BFmZmakpqby8MMP07hxYwBCQkL050dFRfHGG2/QtGlTAIKCgu6rnoowarg5fPiw/gcDMHXqVADGjRvH999/T0xMDFFRUfr9X375JQUFBUyaNIlJkybptxcdX+O1HqWEm7PrICdNWX9KCCFEuc78t3+Z+0wKWweKHJle9h+Otx+7583eZRxZeZ07d9a3VAB06dKFTz75BI2m9FakVq1a6Z/b2Nhgb29PfHw8AM2bN9ff0unRowd//fUXY8aMYeLEiSxevBgLCwt++eUXnnjiCUxMlN4lGRkZvP/++6xfv56YmBgKCgrIzs4u8Rl6r86ePUtoaKg+2AB069YNrVZLREQEPXv2ZPz48fTv358HH3yQsLAwRo4ciZeXF6B8tj/zzDP89NNPhIWFMWLECH0IMhSjhptevXrp70mW5vbAsmPHDsMWZGjebcE1GBIi4MwaaPuksSsSQogaz9q84h9Vhjq2qt1+W0alUun71GzYsIH8/HxAuTMBMHjwYHQ6HevXr6dDhw7s3r2buXPn6s9//fXX2bx5M3PmzCEwMBArKyuGDx9OXl7J226G8t133/Hyyy+zceNGVqxYwTvvvMPmzZvp3Lkz77//PqNHj2b9+vX89ddfvPfeeyxfvpyhQ4carJ5a2aG41lKpihfTlFFTQghRZ/zzzz8lXh84cICgoCDUanWl36thw4YEBgYSGBiIj48PAJaWljz22GP88ssvLFu2jODgYNq2bas/Z+/evYwfP56hQ4fSsmVLPD09uXr16n19T0VCQkI4fvw4mZmZJa5nYmJCcHCwflubNm2YNm0a+/bto0WLFixdWjy3W5MmTXj11Vf5+++/eeyxx/juu++qpLaySLipbq0eB1QQuReSrxq7GiGEEFUgKiqKqVOnEhERwbJly1iwYAGvvPJKlV5jzJgxrF+/nm+//ZYxY8aU2BcUFMSqVasIDw/n+PHjjB49+o7RVfdzXUtLS8aNG8epU6fYvn07L730Ek8++SQeHh5cuXKFadOmsX//fiIjI/n777+5cOECISEhZGdnM3nyZHbs2EFkZCR79+7l0KFDJfrkGEKtGy1V6zn4QMADcHkHHF8Bvd40dkVCCCHu09ixY8nOzqZjx46o1WpeeeWVKp+4r0+fPjg7OxMREcHo0aNL7Pv000+ZMGECXbt2xdXVlTfffLPKZuS3trZm06ZNvPLKK3To0AFra2uGDRvGp59+qt9/7tw5fvjhBxITE/Hy8mLSpEk899xzFBQUkJiYyNixY4mLi8PV1ZXHHnuMGTNmVEltZVHpyuv0UgelpaXh4OBAamqq8ea8Ob4CVj8LTv7w8jHldpUQQtRjOTk5XLlyBX9/fywtLY1djjCS8v4dVObzW25LGUPIw2BuC8lXIOqAsasRQggh6hQJN8ZgbgPNHlWeS8diIYQQ1eiXX37B1ta21Efz5s2NXV6VkD43xhI6CsJ/gdOrYeBHYGZl7IqEEELUA4888gidOnUqdZ+hZw6uLhJujKVhN3Dwg9QoiNgALYYZuyIhhBD1gJ2dHXZ2dsYuw6DktpSxmJhA6OPK83C5NSWEEEJUFQk3xhRauFL4pa2QHmvcWoQQQog6QsKNMbk0hgYdQaeFk78ZuxohhBCiTpBwY2ytC1tvwpdB/ZpySAghhDAICTdVrEBTyemumw8FtQXEn4bYk4YpSgghhKhHJNxUkQtx6Tz13UH+u+5M5U60coLggcpzmfNGCCFqnV69ejFlypRa8771gYSbKnIzPZftETdZdjCKqMSsyp3cunCNkBO/gia/6osTQghhMKtWreKDDz6o0LFXr15FpVIRHh5u2KLqOQk3VaRroCs9glzJ1+iYu+V85U5u3Ads3CArAS5uNUyBQgghDMLZ2bnOzxtT20i4qUJv9A8G4I/wG5yLrcRqrGozaDlSeX58qQEqE0KIWking7zM6n9UcnDHrbePGjVqxMyZM5kwYQJ2dnb4+fnx5Zdf6o/19/cHoE2bNqhUKnr16lXh6yQnJzN27FicnJywtrZm4MCBXLhwQb8/MjKSwYMH4+TkhI2NDc2bN2fDhg36c8eMGYObmxtWVlYEBQXx3XffVer7rE1khuIq1KqBI4NaerLhZCxzNkXw9bgOFT+59Sg4sAgi/oKsJLB2NlyhQghRG+RnwUzv6r/u29HKGoD36JNPPuGDDz7g7bffZuXKlbzwwgs88MADBAcHc/DgQTp27MiWLVto3rw55ubmFX7f8ePHc+HCBdauXYu9vT1vvvkmgwYN4syZM5iZmTFp0iTy8vLYtWsXNjY2nDlzBltbWwCmT5/OmTNn+Ouvv3B1deXixYtkZ2ff8/dY00m4qWJTHwxm46lYtpyN50hkEu0aVjCkeLYEjxYQd0pZb6rD04YtVAghhEEMGjSIF198EYA333yTuXPnsn37doKDg3FzcwPAxcUFT0/PCr9nUajZu3cvXbt2BZQFMH19ffnjjz8YMWIEUVFRDBs2jJYtWwIQEBCgPz8qKoo2bdrQvn17QGlhqssk3FSxQHdbRrTzZcXha3y0MYIVz3ZGpVJV7OTQUfD3f5RRUxJuhBD1nZm10opijOveh1atWumfq1QqPD09iY+PL/P43bt3M3DgQP3rJUuWMGbMmBLHnD17FlNT0xILXrq4uBAcHMzZs2cBePnll3nhhRf4+++/CQsLY9iwYfpaXnjhBYYNG8bRo0fp168fQ4YM0Yekukj63BjAK2FBmJuacPBKEjvP36z4iS1HgEoN1w9BwkXDFSiEELWBSqXcHqruR0X/IC3D7Strq1QqtNqy50Br37494eHh+scjjzxyT9d95plnuHz5Mk8++SQnT56kffv2LFiwAICBAwcSGRnJq6++SnR0NH379uX111+/p+vUBhJuDMDb0YqxnRsCMHtTBFptBTun2XlAYF/lucx5I4QQdU5RHxuNRqPfZmVlRWBgoP5R2sirkJAQCgoK+Oeff/TbEhMTiYiIoFmzZvptvr6+PP/886xatYrXXnuNr776Sr/Pzc2NcePG8fPPPzNv3rwSHZ3rGgk3BvJi70BsLUw5HZ3G+pMxFT+xaDHNEyugnKQvhBCi9nF3d8fKyoqNGzcSFxdHampqhc4LCgri0UcfZeLEiezZs4fjx4/zr3/9Cx8fHx599FEApkyZwqZNm7hy5QpHjx5l+/bthISEAPDuu++yZs0aLl68yOnTp1m3bp1+X10k4cZAnG3MmdhD6cz16ebz5Fd0WYbgQWDhAKnXIHKPASsUQghR3UxNTZk/fz5LlizB29tbH0wq4rvvvqNdu3Y8/PDDdOnSBZ1Ox4YNG/S3wTQaDZMmTSIkJIQBAwbQpEkTFi9eDCgtRtOmTaNVq1b07NkTtVrN8uXLDfI91gQqna5+rdaYlpaGg4MDqamp2NvbG/RaGbkFPPDxdhIz85g5tCWjO/lV7MQ/X4Ej30PoaBj6uUFrFEKImiAnJ4crV67g7++PpaWlscsRRlLev4PKfH5Ly40B2VqYMql3IACfbT1PTr7mLmcUKro1dWYN5GYYqDohhBCibpJwY2BjOvvh42hFXFouP+y7WrGTfDuBcwDkZ8K5dQatTwghhKhrJNwYmIWpmilhQQAs3nGJ1OwKLIypUhW33oTLcgxCCCFEZUi4qQaPtW1AoLstqdn5fLXrcsVOavW48vXKLki9brjihBBCiDpGwk01UJuoeL1fEwC+2XOFm+m5dz/JqSE07A7olGHhQgghhKgQCTfVpH9zT0IbOJCdr2Hhtgt3PwEg9Anla/iySq9SK4QQQtRXEm6qiUql4t8DmgKw9GAU15Ky7n5Ss0fB1AoSL8CNowauUAghhKgbJNxUo26BrnQPdCVfo2Pu5vN3P8HSHkIGK8+PS8diIYQQoiIk3FSzN/oHA7A6/AYRsel3P6Ho1tSp36GgAn11hBBCiHpOwk01C/V1ZGALT3Q6mPN3xN1PCOgFdt6QnQznNxm8PiGEEJXTq1cvpkyZYuwy7rBjxw5UKhUpKSl3Pfb777/H0dHR4DVVFwk3RvBavyaYqGDzmTiORCaXf7CJGlqNVJ7LSuFCCFHjrFq1ig8++KBCx169ehWVSkV4eLhhi6rnJNwYQaC7HcPbNQDg443nuOvyXkUT+l34GzITDFydEEKIynB2dsbOzs7YZYhbSLgxklfCmmCuNuGfK0nsunCXwOLeFLzbgLYATq6sngKFEKKmyMss+5GfU4ljs+9+7D249bZUo0aNmDlzJhMmTMDOzg4/Pz++/PJL/bH+/v4AtGnTBpVKRa9evUp9z65du/Lmm2+W2Hbz5k3MzMzYtWsXAD/99BPt27fHzs4OT09PRo8eTXx8/D19D6X5/PPPady4Mebm5gQHB/PTTz/p9+l0Ot5//338/PywsLDA29ubl19+Wb9/8eLFBAUFYWlpiYeHB8OHD6+yuirCtFqvJvR8HK14sktDvtlzhdmbztEj0BUTE1XZJ4SOguhjyqipzs9XX6FCCGFsM73L3hfUD8b8Vvx6diDklzHVRsPu8NT64tfzWkJWYslj3k+99zoLffLJJ3zwwQe8/fbbrFy5khdeeIEHHniA4OBgDh48SMeOHdmyZQvNmzfH3Ny81PcYM2YMH3/8MR9++CEqlfLZsGLFCry9venRowcA+fn5fPDBBwQHBxMfH8/UqVMZP348GzZsuO/vYfXq1bzyyivMmzePsLAw1q1bx1NPPUWDBg3o3bs3v//+O3PnzmX58uU0b96c2NhYjh8/DsDhw4d5+eWX+emnn+jatStJSUns3r37vmuqDGm5MaIXezXGxlzNqRtpbDgVU/7BLYaDiRnEHIe4M9VToBBCiEobNGgQL774IoGBgbz55pu4urqyfft2ANzc3ABwcXHB09MTZ2fnUt9j5MiRREdHs2fPHv22pUuXMmrUKH3YmTBhAgMHDiQgIIDOnTszf/58/vrrLzIyMu77e5gzZw7jx4/nxRdfpEmTJkydOpXHHnuMOXPmABAVFYWnpydhYWH4+fnRsWNHJk6cqN9nY2PDww8/TMOGDWnTpk2JVp3qIC03RuRia8HEngHM23KBT/4+T//mnpipy8ibNi7QpL+ySvjxZdCvYp3XhBCi1ns7uux9KnXJ129cLOfY236/Tjl57zWVo1WrVsWXVKnw9PQs93bR7t27GThwoP71kiVLGDNmDP369eOXX36hR48eXLlyhf3797NkyRL9cUeOHOH999/n+PHjJCcno9VqASVcNGvW7L6+h7Nnz/Lss8+W2NatWzc+++wzAEaMGMG8efMICAhgwIABDBo0iMGDB2NqasqDDz5Iw4YN9fsGDBjA0KFDsba2vq+aKkNabozsmR4BONuYcyUhk5VH7rJAZtGcNyd+Ba3G8MUJIURNYG5T9sPMshLHWt392CpgZmZW4rVKpdIHj9K0b9+e8PBw/eORRx4BlFtTK1euJD8/n6VLl9KyZUtatmwJQGZmJv3798fe3p5ffvmFQ4cOsXr1agDy8vKq5Psoj6+vLxERESxevBgrKytefPFFevbsSX5+PnZ2dhw9epRly5bh5eXFu+++S2hoaIWGpFcVCTdGZmthyqTegQB8tuUCOfnlhJag/mDlBBmxcHl7NVUohBCiqhT1sdFoin/XW1lZERgYqH8Ujbx69NFHycnJYePGjSxdupQxY8bozzl37hyJiYl8+OGH9OjRg6ZNm1ZpZ+KQkBD27t1bYtvevXtLtAhZWVkxePBg5s+fz44dO9i/fz8nTyqtYaampoSFhfHxxx9z4sQJrl69yrZt26qsvruR21I1wJhOfnyz+zLRqTn8uP8qz/ZsXPqBpuZK35tDXymLaQaGVW+hQggh7ou7uztWVlZs3LiRBg0aYGlpiYODQ6nH2tjYMGTIEKZPn87Zs2cZNWqUfp+fnx/m5uYsWLCA559/nlOnTlV4rp2KeOONNxg5ciRt2rQhLCyMP//8k1WrVrFlyxZAmfRPo9HQqVMnrK2t+fnnn7GysqJhw4asW7eOy5cv07NnT5ycnNiwYQNarZbg4OAqq+9upOWmBrA0UzMlrAkAi3dcIi0nv+yDWxf+4z63DnLSqqE6IYQQVcXU1JT58+ezZMkSvL29efTRR8s9fsyYMRw/fpwePXrg5+en3+7m5sb333/Pb7/9RrNmzfjwww/1nX2rwpAhQ/jss8+YM2cOzZs3Z8mSJXz33Xf6oeuOjo589dVXdOvWjVatWrFlyxb+/PNPXFxccHR0ZNWqVfTp04eQkBC++OILli1bRvPmzausvrtR6e46g5zh7Nq1i9mzZ3PkyBFiYmJYvXo1Q4YMKfecHTt2MHXqVE6fPo2vry/vvPMO48ePr/A109LScHBwIDU1FXt7+/v7BqpQgUZL/3m7uHQzk5f6BPJavzISrk4HizpBQgQ8sgDajq3eQoUQwgBycnK4cuUK/v7+WFpa3v0EUSeV9++gMp/fRm25yczMJDQ0lEWLFlXo+CtXrvDQQw/Ru3dvwsPDmTJlCs888wybNtX+NZdM1Sa8XhhovtlzhZvpZSySqVIVdywOl+UYhBBCiNsZNdwMHDiQ//u//2Po0KEVOv6LL77A39+fTz75hJCQECZPnszw4cOZO3dumefk5uaSlpZW4lFTDWjhSasGDmTlaVi0vZzhjK0eB1QQtQ+SrlRbfUIIIWqngQMHYmtrW+pj5syZxi6vytWqDsX79+8nLKxkJ9r+/fuXuxrrrFmzmDFjhoErqxoqlYp/92/Kv775h1/+ieTp7v74OpcyL4CDDwQ8AJd3wIkV0Outaq9VCCFE7fH111+TnZ1d6r6yJhKszWpVh+LY2Fg8PDxKbPPw8CAtLa3MH9q0adNITU3VP65du1Ydpd6z7kGudAt0IV+jY96WC2UfGDpa+Xp8mdIPRwghhCiDj49PieHmtz4k3NRCFhYW2Nvbl3jUdG/0bwrAqmPXOR+XXvpBIQ+DuS0kX4WoA9VXnBBCGFB5k92Juq+qxjjVqttSnp6exMXFldgWFxeHvb09VlZWZZxV+7T2dWRAc082no5lzqYIvhzb/s6DzG2g2aMQ/ouymGbDLtVfqBBCVBFzc3NMTEyIjo7Gzc0Nc3Nz/RpKon7Q6XTcvHkTlUp1xyzPlVWrwk2XLl3uWO108+bNdOlS9z7YX+/fhL/PxPL3mTiORiXT1s/pzoNCRynh5vQfMPDjO6cWF0KIWsLExAR/f39iYmKIji5nLSlRp6lUKho0aIBarb77weUwarjJyMjg4sXiUUFXrlwhPDwcZ2dn/Pz8mDZtGjdu3ODHH38E4Pnnn2fhwoX8+9//ZsKECWzbto1ff/2V9evXl3WJWivQ3Y5hbRvw25HrfLzxHMsmdr7zr5iG3cDBD1Kj4Nx6aDncOMUKIUQVMDc3x8/Pj4KCghLLE4j6w8zM7L6DDRg53Bw+fJjevXvrX0+dOhWAcePG8f333xMTE0NUVJR+v7+/P+vXr+fVV1/ls88+o0GDBnz99df079+/2muvDlMebMKa8GgOXE5i94UEejZxK3mAiQmEPg67ZsPx5RJuhBC1XtEtifu9LSHqN6POUGwMNXWG4rL8988zfLv3Ci19HFgzqRsmJre13iReggVtQWUCU8+CnadxChVCCCEMqNbMUCzublLvxtiYqzl5I5W/TsXeeYBLY2jQEXRaOPFr9RcohBBC1DASbmo4F1sLnukRAMAnf0dQoCllmGTRYpoy540QQggh4aY2eKaHP07WZlxOyGTlket3HtB8KKgtIP4MxJ6o/gKFEEKIGkTCTS1gZ2nGpN6BAHy29QI5+beNIrByguCBynNZTFMIIUQ9J+GmlvhX54Z4O1gSk5rDzwci7zygdeFyDCd/A01+9RYnhBBC1CASbmoJSzM1r4QFAbBo+0XSc24LMI37gI0bZCXAxS1GqFAIIYSoGSTc1CLD2jYgwM2G5Kx8vtp9peROtRm0HKk8Py63poQQQtRfEm5qEVO1Ca/3Cwbg692XScjILXlA0aipiL8gK6maqxNCCCFqBgk3tczAFp609HEgK0/Dou0XS+70bAkeLUCTB6dXGadAIYQQwsgk3NQyKpWKfw9QWm9+ORDF9eSskgeEFs15s7yaKxNCCCFqBgk3VU1byiR7Vax7oCtdG7uQp9Eyb8uFkjtbjgCVGq4fgoQLpb+BEEIIUYdJuKkqOh2c/gMWdYDUUibaq0IqlYo3+iutN6uOXudCXHrxTjsPCOyrPJeOxUIIIeohCTdVRaeDA59D4kXY8G+DX66NnxP9m3ug1cGcvyNK7tTfmlpRLS1JQgghRE0i4aaqmJjA4HlgYgoR6+HsOoNf8vV+wZioYNPpOI5FJRfvCB4EFg6Qdh2u7jZ4HUIIIURNIuGmKrmHcDn4GeX5X/+G3PTyj79PQR52PNa2AQAfb4xAV7RoppkltBiqPJeOxUIIIeoZCTdV6Ovdlxl4rDM3zbwh7QZsn2nwa04JC8JcbcL+y4nsuZhQvKPo1tSZNZCbYfA6hBBCiJpCwk0Vcre3RKu24LXMJwHQ/fMFRIcb9JoNnKwZ09kPgNmbbmm98e0EzgGQnwln/zRoDUIIIURNIuGmCj0S6s034zpw2LQtazRdUem0ZJ3eYPDrTuodiLW5mhPXU9l4KlbZqFLd0rFYRk0JIYSoPyTcVLGeTdxYOrEzC0zH86+8aTx8ois3UrINek1XWwue6REAwOy/IyjQFI6QavW48vXKLoMPTxdCCCFqCgk3BtDa15EvXhjEZbsOXL6ZyYjP95GZW2DQa07s4Y+TtRmXb2ay6ugNZaNTQ2jYHdDBiRUGvb4QQghRU0i4MZBAdztWvtCVQHdbXu5gg83hxQa9np2lGS/2CgRg7pbz5ORrlB1Fi2mGL1Pm4hFCCCHqOAk3BuTtaMW6Z1vxxOHHYfN0OLcBjdZwAePJLg3xcrAkJjWHnw9EKhtDHgFTK0i8ADeOGOzaQgghRE0h4cbALG2doN14ALTrX+eJhVtYE37DMNcyU/NK3yAAFm2/SHpOPljaQ8hg5QDpWCyEEKIekHBTHR54Exz9MEm/wYPx3/HK8nC+23vFIJca3q4BAa42JGfl8/XuwmuEPqF8PbkSCnINcl0hhBCippBwUx3MreGhTwF4xnQjzVVXmfHnGebcOi9NFTFVm/BaP2VRza93XyYxIxcCeoGdN+SkwPmNVXo9IYQQoqaRcFNdgh6E5kMxQcO3rj9jgpaF2y/y9uqTVd4PZ2ALT1r6OJCZp2HR9ktgooZWI5WdshyDEEKIOk7CTXUa8CFY2OORfoZl7S9iooJlB68x6ZejxaObqoCJiYo3+iutNz8fiOR6clbxhH4X/obMhHLOFkIIIWo3CTfVyc4THvwvdH2ZTo88y6LRbTFXm3D8egopWflVeqkeQa50CXAhT6Plsy0XwL0peLcBbYHS90YIIYSoo1S6qu70UcOlpaXh4OBAamoq9vb2xi6HfZcScLezINDdrsrf+2hUMo8t3oeJCjZN6UnQ1aXKauVeofDcriq/nhBCCGEolfn8lpYbY9Jq6eqSVSLYbD0bx7WkrCp5+7Z+TvRr5oFWB5/8fR5aDAcTM4g5DnFnquQaQgghRE0j4cZYUq7Bt/3gu4cgLxOA/ZcSeeHnozz2+T7OxqRVyWVe7x+MSgUbT8dyPEkNTforO2TOGyGEEHWUhBtjsXaG9FhIjYIdHwIQ4GaDv6sNN9NzGblkPwevJN33ZZp42PFYmwYAfLzpXPGcNyd+BY1h17sSQgghjEHCjbGY28CgOcrz/Ysg9hQe9pb8+lwX2jd0Ij2ngCe/+YctZ+Lu+1JTwoIwU6vYezGRvap2YOUEGbFwecd9v7cQQghR00i4MabgAcraTzoN/PkKaLU4WJvx09Od6NvUndwCLc/9fISVR67f12V8na0Z06khAB9vuYyuxXBlh9yaEkIIUQdJuDG2gR+BuR3cOAxHvgXAylzNF0+2Y1jbBmi0Ol7/7Tj7Lt3f3DST+wRiba7m+PVU9tv1UzaeWwc5qff7HQghhBA1ioQbY7P3hr7Tledb/qv0wwHM1CbMGdGKZ3sGMLSND539Xe7rMq62FjzT3R+A6QfN0LkGQ0EOnFlzX+8rhBBC1DQSbmqCDs8oE+w5+0Nuun6zSqXi7UEhzBkRiomJCoC8Ai0FGu09XeaZngE4WptxKSGLk64DlY3hcmtKCCFE3SLhpiYwUcOoFTBxG7gG3bFbXRhsNFodr64I5/mfj9zTcg32lma82KsxANMvN0OHCqL2QZJhVigXQgghjEHCTU1h56GEnHJExKaz5WwcW87G8+Q3/5CaXfklG8Z2aYSnvSXH02yJdu6kbDyx4l4qFkIIIWokCTc1TX42bP0Ats+8Y1czb3t+eroTdpamHLqazONL9hOfllOpt7c0U/NKmNI69HlyR2Xj8WVQv1bhEEIIUYdJuKlpru6B3XNg9yelLpHQ0d+ZX5/rgpudBedi03ns831cTcis1CVGtGtAgKsNv2e3Jk9tDclXIWp/FX0DQgghhHFJuKlpgh6Epg8rq3evmwLaOzsPh3jZs+qFrjRyseZ6cjbDv9jHqRsVH9JtqjZhar8mZGPJ+oIOykaZ80YIIUQdIeGmJhr4EZjbwrV/4OgPpR7i62zNb893pbm3Pek5BWTmVm4phUEtvGjhY8+K/B7KhtN/KLfEhBBCiFpOwk1N5NAA+ryjPN/yHqSXvgSDm50Fy5/tzI8TOtIpoHLz4JiYqHijf1P+0Tblus4VctPg3Pr7rVwIIYQwOqOHm0WLFtGoUSMsLS3p1KkTBw8eLPf4efPmERwcjJWVFb6+vrz66qvk5FSuU22t0PFZ8ApVZhDe9HaZh9lZmpUINudi0/j10LUKXaJnkCudAlxZpemubJBbU0IIIeoAo4abFStWMHXqVN577z2OHj1KaGgo/fv3Jz4+vtTjly5dyltvvcV7773H2bNn+eabb1ixYgVvv132h3+tZaKGwZ+BygQiNkDq3deXSsjIZew3B/n37ydYtP0iuruMgFKpVPx7QFNWaZRbU7pL2yAtpkrKF0IIIYzFqOHm008/ZeLEiTz11FM0a9aML774Amtra7799ttSj9+3bx/dunVj9OjRNGrUiH79+jFq1Ki7tvbUWt5tlIDz4gHlVtVduNiYM7K9LwCzN0Xw33Vn0GrLDzht/ZwICmnNEW0QKp0WTv5WJaULIYQQxmK0cJOXl8eRI0cICwsrLsbEhLCwMPbvL31YcteuXTly5Ig+zFy+fJkNGzYwaNCgMq+Tm5tLWlpaiUet0nYsODWs0KEqlYrX+wfz7sPNAPhu71Ve/TWcvILyl2t4vV8wv2t6ApB9+GeZ80YIIUStZrRwk5CQgEajwcPDo8R2Dw8PYmNjSz1n9OjR/Pe//6V79+6YmZnRuHFjevXqVe5tqVmzZuHg4KB/+Pr6Vun3Ua2u7oGbEXc9bEJ3f+Y93hpTExVrwqOZ+ONhsvLKHk0V7GmHqsVQcnVmWCVHQOyJqqxaCCGEqFZG71BcGTt27GDmzJksXryYo0ePsmrVKtavX88HH3xQ5jnTpk0jNTVV/7h2rWKdbWucg1/B9w/Bn6+UOvfN7Ya08eHrce2xMlOz8/xN5mw6X+7xz/dvx1ZdWwCid5Z+W1AIIYSoDYwWblxdXVGr1cTFlRzmHBcXh6enZ6nnTJ8+nSeffJJnnnmGli1bMnToUGbOnMmsWbPQlvGBb2Fhgb29fYlHrdRkAJjZKDMJh/9coVN6Bbvzy8RO9Ahy5dUH71yQ81a+ztYkBw0HwDpiNbqCvPsuWQghhDAGo4Ubc3Nz2rVrx9atW/XbtFotW7dupUuXLqWek5WVhYlJyZLVamWxybuNDKr1HH2hd+Htt7+nQ8bNCp3W1s+pcD0qM0D573QzPbfUY/sNHk2CzgFHXSpHt62skrKFEEKI6mbU21JTp07lq6++4ocffuDs2bO88MILZGZm8tRTTwEwduxYpk2bpj9+8ODBfP755yxfvpwrV66wefNmpk+fzuDBg/Uhp07r9Dx4toScFPj7nXt6iy92Xqbf3J2EX0u5Y5+boy1XvZXO2WkHfiQqMes+ihVCCCGMw6jh5vHHH2fOnDm8++67tG7dmvDwcDZu3KjvZBwVFUVMTPG8K++88w6vvfYa77zzDs2aNePpp5+mf//+LFmyxFjfQvVSm8LDnwEqOLEcLu+o1Ol5BVo2noohOSuf0V8dYPeFO1t/mg54DoAHNAf4dOFcDl5JqoLChRBCiOqj0tX5+zklpaWl4eDgQGpqau3tf7PhDTj4JTg3hhf3g6lFhU/NyC3g+Z+OsOdiAmZqFZ+ObM3gUO8Sx2StfgXr49+TobPk8YIZjB/6ECPa1+JRZkIIIWq9ynx+16rRUqJQn3fAs5XSB0dtXqlTbS1M+WZ8ex5q5UW+RsfLy4/x4/6rJY6xfmQOmoY9sFXlsMR0Nh+u3M1HG8/ddUJAIYQQoiaQlpvaSqcDleqeT9dodby/9jQ/HYgEYEpYEFPCmhQfkJWE7qs+qJKvcFAbzL/y3qZ38wbMfbw11uam91u9EEIIUSnSclMf3BpsclIrPauw2kTFfx9tzpQwZYi4i+1tt7asnVGNXgEW9nQ0iWCm+XdsOh3LiC/2E5taBxcqFUIIUWdIuKntTv8BC9pD+NJKn6pSqZgS1oS1k7vxZOdSlnhwC4bh34HKhOEmO3jFahOno9N4ZOEeTlxPue/ShRBCCEO4p3CTmZnJ9OnT6dq1K4GBgQQEBJR4iGqUEgWZ8crQ8MzEe3qLVg0c9c+TM/P4z+qTZOQWLtcQFAb9/gfAFN1PjHE+R3x6LiOX7GfDSVlBXAghRM1zT50nnnnmGXbu3MmTTz6Jl5cXqvvo+yHuU+cX4MQKiDulBJyhn9/X2728/Bi7LySw/3IiL/UJZHArb0w7vwA3z6I6+iP/V/ApOv+5LL1iw4u/HOX1fk2Y1DtQ/g0IIYSoMe6pQ7GjoyPr16+nW7duhqjJoOpMh+JbXTsE3zwI6GDcOvDvcc9vdfxaCk//cIiEDGX5BV9nK55/oDHDQt2xXDYMIveic2zI7Iafs/ifFACGtvHhw2EtsTCtBxMpCiGEMAqDdyh2cnLC2dn5nooTBuDbAdpPUJ6vmwIFpS+vUBGhvo5se70Xb/QPxsXGnGtJ2fxn9Sl6frKXVUGzwLEhqpRI/p0yk5mPBKM2UbH62A1Gf/UPCRn3fl0hhBCiqtxTuPnggw949913ycqS6flrjL7vgq0HJF6EPXPv663sLc2Y1DuQPW/24b3BzfBysCQ+PZe4AlsYvQLM7SByD6MT5vPD+A7YWZpyJDKZIYv2EhGbXkXfkBBCCHFv7um2VJs2bbh06RI6nY5GjRphZmZWYv/Ro0errMCqVidvSxU59TusnADtnoLB86rsbfMKtPxx7AYDW3oqC3Ce34Ru6eOo0JHe+wPiQibw9A+HiEzMwtbClAWj29A72L3Kri+EEEJU5vP7njoUDxky5F5OE4bW/DFwCQSv0Cp9W3NTE0Z2KF5+QRfUj++sn2JC1rdYb3uXvZE2LB49nBnrznDwShJPf3+I6Q83Y3zXRtLRWAghRLWTGYpFpel0OradjYO1k+mbs5k0nTXD8/9L89AOZOcVsPF0HABjOvnx/iPNMVPLdEpCCCHuT7XMUJySksLXX3/NtGnTSEpSVo4+evQoN27cuNe3FFUpJQp+nwhZVb+qt0qlom8zT/q89jNp7u2xV2WxxHQ2245FsOlMHN0CXVCp4Jd/onjqu0OkZudXeQ1CCCFEWe4p3Jw4cYImTZrw0UcfMWfOHFJSUgBYtWoV06ZNq8r6xL3Q6eC3p+Dkr7B5usEuozKzxH7scnDww98kjuWOn6PWFTC2SyO+fLI91uZq9lxM4LHFe7makGmwOoQQQohb3VO4mTp1KuPHj+fChQtYWlrqtw8aNIhdu3ZVWXHiHqlU0H+m8vzYz3B1r+GuZesGo5aBmQ0hOcc43G4LD4Z48GAzD357vgt2FqZcupnJQwt2s/9SguHqEEIIIQrdU7g5dOgQzz333B3bfXx8iI2Nve+iRBXw6wTtxivP73Pum7vybAHDvgZUOJ7+EZPDXwPQ1NMeK3NlYr/MXA2jvvqH6X+cQqutV928hBBCVLN7CjcWFhakpaXdsf38+fO4ubndd1GiioS9DzZukHAe9s437LWaDoKw95Tnf70Jl7ajNlGxZnI3xnVtiLpw1NRPByJp+8Fmfjt8jXyN1rA1CSGEqJfuKdw88sgj/Pe//yU/X+koqlKpiIqK4s0332TYsGFVWqC4D1ZOMOBD5fmu2ZB4ybDX6zYFWj0BOg38Ng4SLuLlYMWMR1pwYFofOjRSZrVOyc7njZUnmLH2tGHrEUIIUS/dU7j55JNPyMjIwN3dnezsbB544AECAwOxs7Pjf//7X1XXKO5Hi2HQuA9ocmH3p4a9lkoFgz+DBh0gJxWWPQ7ZyQC42Vvy2/Nd+GhYS9QmSivOvkuJRKdkA3AzPbd4JXIhhBDiPtzXPDd79+7l+PHjZGRk0LZtW8LCwtDpdDV64rZ6Oc9N0mUIXwo9XgMzK8NfLz0OvuoDadchoDeMWQnq4vkij0Qm8+yPh0jMzMfNzoKvxrbn5wORbD4Tx/iujRjftRFONuaGr1MIIUStUZnP73sKN7Nnz+aNN964Y7tGo+Ff//oXy5Ytq+xbVpt6GW6MIeYEfNsf8rOg43Mw6OMSu68nZ/H094eJiEvHXK3CxdaCmNQcAKzN1Yzp5MfEHgG421uW9u5CCCHqGYNP4jd79my++eabEts0Gg1PPPEE4eHh9/KWorpoNXB5h+Gv49UKhi5Rnh9cAoe/LbG7gZM1v7/YlT5N3cnT6IhJzeGhll6EeNmRlafhq91X6P7xdv6z+iTXkmSBViGEEBV3T+Fm/fr1vP7666xcuRKAgoICRowYwenTp9m+fXuVFiiqUH4OfB0GPz4KkfsNf71mj0Cfd5TnG96AKyXnQLK1MOWrse15urs/AOtPxhDkbssX/2pLWz9H8gq0/PJPFKuPyazXQgghKu6ewk2HDh34/fffmTBhAmvXrmXYsGFERESwfft2PD09q7pGUVXMLJU5aaBw7ps8w1+zx+vQYjhoC2DFk3eM2FKbqJj+cDNmPdYSUxMVa4/H8OWuy3zxr3Ysf7YzDzbzYFyXRvrjw6+lcPJ6quHrFkIIUWvdV4fiP/74gxEjRhASEsK2bdtwdXWtytoMot73uclKgoUdICsB+r6rdDI2tPxs+G4QRB8F12B4ZjNYOtxx2L6LCTz/8xHScgrwcbTim/HtaepZ/DPS6XQ89vk+jkWl0LOJG5N6NaZTgIvh6xdCCGF0BulQ/Nhjj5W6/cCBAwQGBpYINqtWrapEudWr3ocbgOMrYPWzYGoJL+4H5wDDXzM9Fr7sDenREBgGo1aUGEFV5PLNDJ7+4TBXEjKxMVezYHQb+jT1ACAnX8O0VSdZezwaTeEsxx0aOfFi70B6NXGr0aP0hBBC3B+DhJunnnqqwgV89913FT62ukm4QVlY88dH4cpOZQ6cf61S5qgxtOhj8O1AKMiGzpNgwMxSD0vJyuOFn4+y/3IiJip4e1AIT3f314eXqMQsvth1iZWHr5NXOMtxMy973h4UQvegmt96KIQQovIMPhS8NpNwUyjhInzeVZncb9g30HJ49Vz39Gr4bbzy/JEF0HZsqYflFWh5d80plh+6BsCojn7899HmmKmLu4nFpeXw1a7L/PJPFNn5GhaNbstDrbwM/R0IIYQwgmoLNzdv3iQiIgKA4ODgWrGulISbW+z8GM5vUmYVLupoXB12fAg7ZoGJGYxdA426lXqYTqfjmz1X+N+Gs+h00LWxC5+PaYeDtVmJ45Iy8/j9yHUmdPfXz3786+Fr5ORrGNneF0sztcG/JSGEEIZl8HCTmZnJSy+9xI8//ohWq9wWUKvVjB07lgULFmBtbX1vlVcDCTe30OSDSg0m9zRo7t7pdLDyKaUVx8oZnt0OTo3KPHzLmTheWX6MzDwNAa42fDO+A/6uNmUen5OvoefH24lPz8XOwpSewW6EhbjTq4m7zHwshBC1lMEn8Zs6dSo7d+7kzz//JCUlhZSUFNasWcPOnTt57bVqGH0jqobarGSw0eRXz3VVKnh0MXi1huwkWPoE5Ny5ynyRsGYerHyhKz6OVlxOyGTIor3su5RQ7tu/1CcQH0cr0nMLWH8ihldXHKfd/21m+Of7+LXwVpcQQoi66Z5ablxdXVm5ciW9evUqsX379u2MHDmSmzdvVlV9VU5abkqRlwU7P1RmLn5mqxJ6qkNatDKCKiMWgvrDqGVgUvYtpPj0HJ798Qjh11IwNVHxf0Na8ERHvzKP12p1hF9PYdvZeLacjeNcbDoAT3VrxHuDmwNK354DlxPpFOCMhancvhJCiJrK4LelrK2tOXLkCCEhISW2nz59mo4dO5KZmVnZt6w2Em5KkZkIC9srrShhM6D7lOq79vUj8P0gKMiBri9Dvw/KPTwnX8O/V55g7fFoACb28OetgSH6vjbluZGSzbZz8bTxdaSFjzLPzr6LCYz++h+szdX0CHKlb1MPejd1x83O4v6/NyGEEFXG4OGmb9++uLi48OOPP2JpqSxsmJ2dzbhx40hKSmLLli33Vnk1kHBThvCl8McLYGoFkw6U2wemyp1cCb8/rTx/dDG0GVPu4TqdjvlbLzJ3y3kA+jZ157NRbbC1uHPenLtZdyKa//55hvj03BLbQ30d6dvUnZHtffF0kMU7hRDC2Awebk6ePMmAAQPIzc0lNDQUgOPHj2NpacmmTZto3rz5vVVeDSTclEGngx8Gw9XdENQPRv9aPXPfFNn2f7BrNqjNYdyf4Nf5rqf8eTya1387Tm6BlqaednwzvgM+jlaVvrROp+N0dBpbzsax7Vw8J25Z3mH9y91p7q208sSn52BvaSajr4QQwgiqZSh4VlYWv/zyC+fOnQMgJCSEMWPGYGVV+Q+X6iThphw3z8MX3UCTByO+h+ZDq+/aWi38NhbO/gnWrsoIKsey+9MUORaVzMQfj5CQkYurrQVfjm1HWz+n+yolPi2HbefiORyZzOzhrfSTB05dEc6GUzF0a+xK3xAP+jR1l1YdIYSoJgYPN7t27aJr166Ympa8DVBQUMC+ffvo2bNnZd+y2ki4uYvts5TOxaZWMPQLaD6k+q6dlwnf9ofYk+DRAiZsAgvbu552IyWbp78/xLnYdMxNTZgzIpRHQr2rvLyHF+zm1I2So7qae9vTt6k7fUM8CPV1rPJrCiFEjafTFbf063Rw8Cvo9GyVX8bg4UatVhMTE4O7u3uJ7YmJibi7u6PRaCr7ltVGws1d5OfA0pEQtR8mH6revjcAqdeVEVSZ8RD8EDz+c4Xm4cnILWDK8mNsORsPwCt9g5gSFlSl603pdDrOxaaz7Zwy+ir8WgpF//c09bRj45TiUJ9XoMXctJrnDxJCCEPTFEBCBESHK0vqRB8DdDBxW/ExG/4Ngz6u8ksbPNyYmJgQFxd3x4zE58+fp3379qSllT1nibFJuKkAnQ7iz4JHs+Jt2/4PGnRQ+uMYui/OtUPw/UPK0hDdp0LYexU6TaPV8dHGc3y56zIAg0O9mT28lcH6yCRk5LIj4iZbz8bRwseBSb0DAcjKK6DTzK208XMiLMSdPk3daeBUcye2FEKIu9r9KZzfCDEnlPUBb6VSw9s3wKywW0rcafCo+r63Bgs3RSuDr1mzhgEDBmBhUTxcVqPRcOLECYKDg9m4ceM9lm54Em7uwY2j8FVv5bl/T3jwA/BubdhrFq1cDjD0Swh9vMKnrjgUxX9Wn6JAq6OZlz3/eSiEboHVt6Dmjoh4xn93qMS2YA87+oa40zfEnda+ThUaui6EENVGq4XEixATrrTGxJ9RFlUumnvs92fg5G/Kc3M78ApVPge82ygP5wCD/+FrsHBTtDL4Dz/8wMiRI0t0HjY3N6dRo0ZMnDgRV9eauzKzhJt7kJ0Ce+bCgc+V1hSAVk9A3+ng0MBw193yvnJdtQWMXw++HSp86v5LibzwyxFSspRZl7sEuPB6/ya0a+hsoGKL6XQ6Lt3MYOvZeLaei+fw1SS0t/xf9t7gZjzVzd/gdQghRLmu7oGIv5QwE3MC8tJL7p90ENyCi49Niy4MMo2rf9keDBhusrKysLa2ZsaMGbz++uvY2JS9vk9NJeHmPqREwdYP4OSvymtTS+j8IvR4rUIdfytNq4UV/4KI9WDjroygqkSYik/PYfH2Syz9J4o8jbIGWu9gN17rF6yfxK86pGTlsfP8TbaejWdHRDxrJnfXr421+th1Vh65Tp+mHvRt6k6jctbMEkKIStPpIPlKYf+YcGWyVNvCLiXbZ8LOj4qPNbUq2SLTpD9Y3d/o06pksHBjbW1Nnz59eOSRR3jkkUfw9PS872Krm4SbKnDjKPw9HSL3KKHj5aNgYWeYa+Wmwzf9If40eLZURlCZVy4A3EjJZv6WC6w8eh1NYRPKoJaeTH2wCYHuBqq7DAUaLabq4r94nv/pCBtPx+pfB7jZEFY4zLxdQyfM1NIpWQhRCRk3IXJvYWtMuPI1p3juLkatgOAByvPI/XDq9+JbS65NQF35yVCri8HCTWRkJGvXrmXNmjXs2bOH0NBQfdBp2bLlfRdeHSTcVBGdTulcVpBbPFxcq4UrOyGgV9Xee02JUkZQZSVAyGAY8eM9NYleSchk7ubz/HkiGp0OTFQwpI0PU/o2wc/FOB1+ryZk6icPPHgliYJb7l85Wpux760+WJvX3F82Qggj0emU0aUx4coffkUjW8OXwR/PlzxWba5Mr+HdBtqONXyfSQOplkn8UlNT2bBhA2vWrGHjxo04Ozvrg84DDzyAWl0zZ3GVcGNARcso+HWFfv8HDdpV3XtHHVBmUNbkQc83oM879/xW52LT+PTv8/x9Jg4AUxMVIzv48nKfIKNOypeWk8/u8wlsPRvH9oh4/F1tWPViN/3+Z344jKWZCa0aONDSx5EWPvbYWVbTIqdCCOPR6SA9puTw6+hjyh98AP1nQZcXlec3I2DVxOLWGO824BYCpuZGK7+qVEu4uVV+fj47duxg7dq1rF27lvT0dBYsWMCYMeWvEQSwaNEiZs+eTWxsLKGhoSxYsICOHTuWeXxKSgr/+c9/WLVqFUlJSTRs2JB58+YxaNCgCtUq4caADnwBW95TFsEEaDEc+r4LTg2r5v2P/QJrCv8HHvYNtBx+X293/FoKc/6OYPcF5ReEuakJT3ZuyIu9GuNia9yFMzVaHYkZubjbK2ErJ19D8/c26W+rgdI4FuBqQ6sGjvRs4srQNgbs3C2EqD7pcaAtAAcf5fW1Q/BN2J3HqdTKlB0dJkK7cdVboxFUe7i53bFjxygoKKBDh/JHt6xYsYKxY8fyxRdf0KlTJ+bNm8dvv/1GRETEHRMEAuTl5dGtWzfc3d15++238fHxITIyEkdHR/0aV3cj4cbAUm8oc+IcXwbolObQTs8pnY6romPa3+/AvgVKZ+bxG6qkdeify4nM+TuCQ1eTAbA2VzOhmz8TewbgYFUzWkbyCrQcvJLE8espnLyeyskbqdxIKZ5r4pFQb+aPagOAVqvjnTWnCPGyp5WPA0297LAwrZktqULUe3mZSivMtYNw/bDyPD1aCSwPzSk8Jgs+agguQYWtMa2Vrx7Ni+eWqQcMFm4+/vhjXnrpJf0Q8L1799K+fXv9fDfp6em8+eabLF68uELv16lTJzp06MDChQsB0Gq1+Pr68tJLL/HWW2/dcfwXX3zB7NmzOXfuHGZmFfvQyc3NJTe3eMXntLQ0fH19JdwYWswJJYhc2am8DugFY9fc//tqNbB8tNLfx9ZTGUFlf/9LLeh0Onaev8knf5/n5A2l8529pSnPPdCY8V0bYXMPK44bWkJGLievp3LieiohXnb0a6508L90M4O+n+zUH2emVtHU056WDRxo5eNA5wAXGZUlhLHlZsB3A5UJ73S3z+qvghbDYPg3xZvyc8Csfq9lZ7Bwc/uyC/b29oSHhxMQEABAXFwc3t7eFVp+IS8vD2tra1auXMmQIUP028eNG0dKSgpr1tz5QTho0CCcnZ2xtrZmzZo1uLm5MXr0aN58880y+/i8//77zJgx447tEm6qgU4HF7coI6sGfaxMAAigyQcT03vvdJyTBt/0g5tnwas1PPUXmFdNh2CdTsem03F8ujmC83EZALjamvNCr0DGdPKrFSuCR6dks+xgFCeup3LiegrJhXP9FHmpTyCv9VPmrkjJymPL2XhCGzgQ4GYrkwsKUZVyMyD6KFw/pNxasnJU1uwr8mlzSLsOdt7KPF4NOoJPO6WDsCGm16jlKhNuKvXn6O056H7uaCUkJKDRaPDw8Cix3cPDQ7/S+O0uX77Mtm3bGDNmDBs2bODixYu8+OKL5Ofn8957pU/RP23aNKZOnap/XdRyI6qBSgVBD0LjviVHN+3+VAk9/f8HvmX3ryqTpT2MWgZf9VFGCqx5EYZ/VyUjtFQqFQNaePJgMw/+PB7N3C3niUzM4oN1Z/h692Ve6hPEiPYNavQQbW9HK3140el0XE/O5uSNVH3Yad+oeCLDo1HJvP7bcUC5HdfC20HpsNzAgVYNHGnobI2JBB4hKu7UKmXCu+sHC1tltMX7rJxKLjI54juw9ynuWyOqTM1ray+HVqvF3d2dL7/8ErVaTbt27bhx4wazZ88uM9xYWFiUWCZCGMGtwSY/Bw59BZk34ZsHodmjEPa+MnV3ZTj7K4tq/vgonF4Nbk2h1523Mu+V2kTFkDY+PNTKi5VHrjN/6wViUnN4e/VJvth5iSlhQTza2qfGt3SoVCp8na3xdbZmUEuvO/arTUzo2MiZU9GpZOVpOHg1iYNXk/T7Px0ZymNtlY7KSZl5ZOUV4ONoVaULkgpRK+WmK3N+JZyHjhOLtx/6RpkDrIh9g+JWmQYdSoabe/njTlSI0cKNq6srarWauLi4Etvj4uLKnBzQy8sLMzOzEregQkJCiI2NJS8vD3Pz2j/Urc4zs4TndsP2/8Gxn+HMGji3Qfnl0PMNsK7E8giNusHDn8Lal2DHLGWa8OZDq7ZctQmjOvoxtI0PS/+JYvGOi0QlZTH11+N8vuMSUx9swoAWnrX2w/6BJm480MQNjVZZMqKodefE9VTOxKSVmMl5TfgNZvx5Bmcbc1r6OBDawIGWDRxp1cABD/v63RdA1HE6HSReUlpjrh1UbjPFnylulWkxrPh3V8vhSodf38IwUwV9AkXlVTrcfP3119jaKvcCCwoK+P777/VrSaWnp5d3agnm5ua0a9eOrVu36vvcaLVatm7dyuTJk0s9p1u3bixduhStVotJYWvA+fPn8fLykmBTm9h7waMLodPzsPlduLQVDixWhno/9mXx7JkV0XassoL5gcWw+gVlIivvNlVesqWZmgnd/Xmioy/f77vKkp2XuRCfwQu/HKWFjz2v9QumVxO3Whty1CYqmnjY0cTDjuHtlJaafI0W9S3fT2JGHqYmKpIyleUkdp6/qd/nYW/BL8900s/4rNHqanyrlhBlyklTZkIvWjRyw+tw6Os7j3PwVQJMXkZxuGn/VPXVKcpUqQ7FjRo1qtAv7ytXrlTo/VasWMG4ceNYsmQJHTt2ZN68efz666+cO3cODw8Pxo4di4+PD7NmzQLg2rVrNG/enHHjxvHSSy9x4cIFJkyYwMsvv8x//vOfCl1ThoLXQBe3KiHnZgRMPqTccqoMTQEse1zpx2PnrYygsjPs0iCp2fl8s/sy3+y5Qmae0oG+fUMnXu8fTOcAF4Ne25hy8jWci03nZGHrzskbqZyPU/6oOTWjv3425ffXnmbzmThaFfbdadXAgRY+DjVmaL0QekWrYV8/WNzxN/4MPLujeCbfI9/Dhn8rfzjdeovJ/s5bvcJwjD7PTWUsXLhQP4lf69atmT9/Pp06dQKgV69eNGrUiO+//15//P79+3n11VcJDw/Hx8eHp59+utzRUreTcFNDaTVK52CfW+at2TkbGnZVbj/dTU4qfB2m3P/2bgtPbaiW+R8SM3L5YuclftwfSW6B0kTdI8iV1/oF09rX0eDXrwmy8gq4fDOzxC2sxxbv5WhUyh3H+jlb09jNhq/GttevsZWanY+dhal0XBbVK3I/7P5ECTQ5KXfuf2QhtH1SeZ6frUyYVwdm+a3NDBZutm3bxuTJkzlw4MAdb5yamkrXrl354osv6NGjx71VXg0k3NQS0cfgy17K8+CH4MEZ4BpU/jmJl+DrvpCdrMyOPOzrql3jqhxxaTks2HaBFYeuka9R/pcKC/HgtX5NCPGqf//O0nLyOX0jjZM3Ujh+PZWT11OJSsoCwNPekgNv99UfO+rLAxyNSsbf1Ub/aORqQ0Dhc2PPFi1qMa0WEi8U95NpPhQa91b2Xd4JPz6iPDe1VFplGnQo7itj4NZfUXkGCzePPPIIvXv35tVXXy11//z589m+fTurV6+uXMXVSMJNLZERr3QSPvK90mlPpYb2E5QRUTauZZ93ZRf8NFSZurzPO0on5Wp0LSmLz7ZeYNXR62gLB0U83MqbV8OCCHCr3/NWpGTlcTYmnczcAsKaFU8B0f2jbVxPzi71HDc7Cw79p3ja+dXHrmNqYqIPQTVxckVhRPnZELlPCTJFj1tXxO4yWZmCApQ5aMJ/UYKMZ0tQyy3Tms5g4aZhw4Zs3LiRkJCQUvefO3eOfv36ERUVVbmKq5GEm1om/pyyXtX5jcprczvo8Sp0nlT2bJ2Hv4V1hQH88Z+VlcSr2cX4DOZuOc/6EzGA0mF3WFsfXu4bRAMn46xAXlMVaLTcSMnmckImV25mciWh+NHAyYoVz3XRH9vtw20llp1wt7PA39WGADcbmns78K/OVbSOmajZ8nMg+SokXQILe/AvvFuQfBU+u20pHlOr4r4yQf0rdptb1EgGCzeWlpacOnWKwMDAUvdfvHiRli1bkp1d+l9hNYGEm1rqyi5lOYeY42DjBi8fAwu7so/f8AYc/BLUFvDIAgh9vPpqvcXp6FQ+/fs8W8/FA8pSCKM7+jGpd6B+UUxRtltHXel0Ot78/QSXCwNQYmZeiWPb+jmWWEV9zNcHMFMrrTzKLS5b/N1s8LK3lP49tYkmX/l/OfGSEmYSL0PqNaDwoyt4kDKpJyhDtr95UBk12aCjEmg8WkirTB1hsBmKfXx8yg03J06cwMtLeo8LA/DvCRN3wMnflOGZRcFGp1MWm/O9bZHW/rMgLRrOrYPVz0LcKWWyQJPqXT6hubcD34zvwJHIZD7dHMHei4n8sD+SFYevMa5LI55/oDFONtJJsSy3DidXqVR8PLz4r/LUrHyuJGZyJSGDKzczcbslLOYVaNl/KRGtDnZE3CzxnhamJgxo4clnTxRPGXDyeio+TlY4WZvV2uH8tZImH1KibgkulyDpsjKpZ9GikSamsO1/kJ9Z8lxzO3AJAJfGxdtUKnhmS/XVL2qsSrXcvPTSS+zYsYNDhw5haVnyr87s7Gw6duxI7969mT9/fpUXWlWk5aaOOfU7rJwATQZA2Axwb1q8T6uF7f+njIgACHxQ6WRs5WiUUgH2XUpgzqYI/UgiWwtTnu7uzzM9/LGzlL8uq0q+RsuRyGT97S2ltSeDqKQs8jU6hrbxYe7jrQHltljT6Rsp0OpwsDIr0ZnZ39WGEC97At3rd3+p+6IpgNQopY+LVytlm04HX3RX5qi6Y9FIwL0ZvLi/+PXf74CJmRJknBsrX23cqm3AgKgZDHZbKi4ujrZt26JWq5k8eTLBwcr6NefOnWPRokVoNBqOHj16x3pRNYmEmzpm1xyl47G2AFQm0HYc9JoGdrf8Gzz1O/wxCQqywSUQRi2/+8grA9LpdGyPiGfOpvOciUkDwNHajOcfaMy4Lo2wMq/5i3PWVkX9ewAauigro8el5fDY4n1Ep2ZT2m/DwaHeLBiltPJotDqmrzlFQ2drvB2t8HKwxMvRCg87C/3Q9nrtyi5lvqqky8WtMcmRoM1Xbg+9sLf42MVdlPlkTK2UlhqXgOLg4hoMfp2M932IGsmg89xERkbywgsvsGnTJv3CmSqViv79+7No0SL8/Ss5AVs1k3BTByVcVDodn1unvDazge5ToMskZZZRgOhwWD5GWYHXwh6Gf6ss6mlEWq2Ov07F8unmCC7dVJrc3ewsmNw7kCc6+mJhKiGnOuXka7iaqHRqvnxLp+b+zT14tqdy6+NaUhY9Pt5+x7kmKuVn90QHP159sAmgtB5tOh2Ll4MSgtxrewDSaiHthhJYisKLTgcDZhYfs7AjJETcea7aAjxbwMRtxdviz4KlA9h6llx/TogyVMskfsnJyVy8eBGdTkdQUBBOTk73VGx1k3BTh0Xug03/geijyuugfjDmt+L9GfHw61iI2g+olLlzur5s9KbtAo2WP8KjmbflvH5ItI+jFS/3DWRY2wa1+wOxjolPy+HnA5FcTcwiNjWH6NRs4tJy9HMbvdirMf8eoNwavT0ImajAw94STwdLvB2s6Nfcg0dbK6tBa7Q64tNzcLezNO6yFTodZCWWnG7hrzeVOWGSr0BBTsnjze1g2rXi/4c2/FvpQ+PSuLA1pvA2kr2PBBhx32rVDMXVTcJNHafVwulVsHWGMsNowAPK9htHlSHijXooyzSc/FXZ3nIkPDK/WmYzvpu8Ai0rDl9j4bYLxKXlAuDvasOUsCAGt/KWET41lFarIyEzl9jUHJyszfF1Vob6X7qZwVu/nyA6JYe4tBwKtCV/1U7q3Zg3+pcMQmoTFe52FsrtrsIWH08HSzo0cia0Kme8LsiFuNPKI/Fi8SikpMvKLLxvRhYHlqWPF0/FYGKqjEQqun3kHADtngK1zDckDE/CTTkk3NQTmvySwz+3z4KdHxa/tvOC9FhAB56tlH44Dj7VXmZpcvI1/HwgksU7LpFUONw50N2Wke0b8GhrH1mBuxbSaHUkZuQSnZpDbGo20Sk5hPo60K6hstjisahkRnyx/44AVOT2IPTElwfwdLAsDEFKEPJ2tMTTwYpGLtY4Wt8yAi8/R1mWpKgzL8CPj8LlHaUXq1LDvy+BVWFrfOR+yMtU+sQ4+EmQEUYj4aYcEm7qqeuH4cwfyi/02JN37rdyhtErlKnXa4iM3AK+23OFL3dfJj2nAFBubXQPcmNYWx/6NfOUzsd1iEarIyEjl5jUHGJSsouDUGoOj4R607+5shzAP5cTefzLA6W+hwV5TG+v4V9+yRATTv71Y5jcPIcaDUt77cLZ1QNvR0sah3+E9ellqDxbgWuTkqOQHP1kXhhRI0m4KYeEG0FmAlzZqfQjuLhZacHRaUFtDg/PVZrqky5DQC/l4dbUqP1yUrPzWX8ihlVHr3M4Mlm/3cZczcCWXjzW1ofO/i5y26qeyMwtICIunbiEZKIzNESn5RObmkOPG18xPGs5pmjvOCdRZ8fYvGmc1jUClBCkVZvz5oAQnukRACijxn7YdxUXWwtcbc1xsbHAxdYcV1sLnKzNpO+XMDoJN+WQcCPukHQVNr8DZ/9UXpvbQV568X5bD/B/oDDsPAAODYxRJQBXEzJZfewGq45d51pS8Uzg3g6WDG3rw9A2DWROlrooN0NpcYwJV2bpjg5XRiVN3KYsLQBw6BtYP1WZ/8WrNXi3JsGuKX8ne3Exx5GYtBylVSg1m/j0XHQ6+GBIC54sXLKivBYhlQreHNCU5x9QRo1Fp2SzZOclXGyVAORiowQi18LXthamMhmiqHISbsoh4UaUSquFXR8rc+aA0lHS3kdZeO/WESKuTWDyoeLX+dlG6Yys0+k4EpnM70dvsO5EtP62FUBoAwcea9uAwaHeOMvsx7VbxEbYPB0SLqBfbuBWjy6CNv9SnmcnQ14W2HvftaUxX6MlPj0XG3O1vn/Oxfh0fj4QRWJmHokZuSRm5JGQkUtSVh46HfzfkBb6tbsOXE7kiTKCEMDUB5vwcl9lLqnryVnM3XxBaQ26rUWo6LW5qbQKibuTcFMOCTeiXGfWwurnlanenfxhxPeQm6b01bm8U1lBeGBhx+SCPJjdWJkQsOgWVoOOZS/oaSA5+Rq2no1n1dHr7Dh/E01hp1RTExW9m7rzWBsf+oS4y7w5NVFOKsScKNki0+c/0Hyosv/yDqXzLyid4AtbZPBqDV6hYG/45W40Wh3JWXlYmJroZ9G+kpDJ70euk5iZS0JGYRjKzCMhPZfMPE2JILT/UiKjvqpYEIpKzGLmhrNK6Lnj9pg5ng5W2MpK8PWWhJtySLgRdxV3GpY9oczXYW4Lj30JTR9S9ul0xX8VXzsE34SVPNfUCvw6K0Gn6UPVPhNyQkYufx6PZtXRG5y8karf7mBlxsOtvHisbQPa+jnKLQNjSrwE2/5PCTRJl+/c3/Vl6PeB8jw3XRmt5BVactbtGiw7T4NKBZZmSpi+lpTFuhMxxQHo1lahzDxmPNqcMZ2UILTvUgKjv/qnzPd+7cEmvFQYhK4mZPLOH6dwsTXH2cYcJ2tzHKzMcLQ2w97KjCB3Wxo4WRv+GxbVRsJNOSTciArJTITfxsHV3crrPu9Aj9fvbO5PvVHcOfnyDsiILd4X9j50f1V5npMGWQlKa1A1BYvzcemsOnqDP47dIDat+NZaIxdrhrZpwGNtffRzsogqlpWkhJfocKVFJuABaD9B2ZcSBfNaFh/r4KuEF+/W4NVG6UNj42KEoqufVqtDq9PpOytHp2Sz9Wyc0hqUqYSgoiCUkJHLWwNDGN3JD4B9FxMY/XXZQeiN/sFM6q0s8nw6OpXHlxzAwUoJPo5WZvog5GBlxgPBbnRtrExcmJOv4UJcBg5WZjhYm2FnYSqd9WsICTflkHAjKkyTD5vehoNfKq+bDYEhi4uXdLidTqesq3N5hxJ4ek0rnlvkxG+w6hllnpCAws7J/g+ArZvhvw2tjgOXE/n96HU2noolK694ocKOjZx5rK0Pg1p5YS8Ld967vEw48Hnx7aWUqJL7mz4MT/yiPNfpYN8C8Giu3F6qJ0GmKuh0On2rY3xaDnsuJijhJzOXtOx8UrLySc1WHhN7BDCkjTJ3VWWD0EPz9+j3majAzrI4CI3q6MeojkrASs3KZ8XhKCUIWZnhYGWuD0WOVmZYm6ullbQKSbgph4QbUWlHvof1ryuL/3m2hCeWKnOBVMbuT2H7TOU9buXRQgk6XSYpHUENLDO3gE2nY1l19AZ7LyXoF4q0MDXhwWYePNbWhx5BbpjJsN+S8nMgPRrSYiA9BpKuKOsidXpW2a/Jh5k+oMktPsfJv7A1JhT8uii3K4VR5ORriE7J1gcf/aMwDPUJcde33IRfS+H5n46Qkp1HTv6dw+rLC0K3e65nANMGhQBKGHvz9xO3BCEzHApvpTlYmdHYzYYAN2Wko06nQ6dDWoxuI+GmHBJuxD2J3A8r/qXcWrJ2hcd/goZdK/ceuRnKulZFnZPjbplM8LUIsFMmaSOq8C9Mn7YGnUwtJjWbNeHR/H7kOhfiM/TbXW3NeSTUh8fa+tDc275u/+Wp0ym3kIqCi8oEgm7pR/VNf2XIdXbynee6N4cX9xW/3vqBEni8WyuzXls5Grp6YWC5BRpSs/NLtAr5uxaHkCsJmczfeoHU7HxSsvIKQ1MBqdl55Gt09xyEipbjsDFXY2tpiq2FKbaWyi0yGws1DzbzZHg7ZUqK7DwNK49ex86i6LjCr4XP7SxN68xgAgk35ZBwI+5ZyjVYPhpiTyhr7AyaXdyP4l5k3ISru5TVkfu8U7z9p6FwaZvSmblRd6Vlx6edMouylWPJRQ2rgE6n43R0Gr8fvc7a8GgSC5d8AAj2sOOxtj482toHT4datuxDfo7SylKQA+4hxdvXvqQMrU6LViZwvLW1xaMlvHDLB9DCDsrSBaB0Frf3AjtvZakO7zbQ+YXq+V5EraLT6cjOV27/Wpsro7sSM3LZejZeCULZxUEoJSuPtOx8Rnbw1XesPhOdxqD5u8t8/9KCUFlGd/Jj5lClj1dqdj6PL9mPnaUpNoUByE4fhsxo1cCB3k3dAaU/1LFrKXcEJmMu7CrhphwSbsR9ycuCNZOUxTkB2j8NAz+q2haW1c8rCxWW1lrgGgyTDxa/XjYKMm8qLQYW9spXSwewtFc+hFuPKj42JUqZhdnSAUwtS+3YnK/RsvvCTX4/eoPNZ+LIK1Ca5VUq6B7oymNtfejf3FP/C9sodDqlj4vFLZMV7v1MWQCy6LZRWjRkJyn77ggsHZXWmFtZuyrBxb2ZMjquyI2jyn8rey+wdDT6CvKifigafp+RU0BGbgHpOQVk5hY+zy2gmZedfl2ymNRs3l97mozcAv3xRc8z8zQlgtD15Cy6f1R2EBrV0ZdZjyn9BFOz8wmd8fcdx1iZKa1Jg1t58+7gZvp63/jtuD4EBbjZ6luWqlJlPr9lwgAhKsPcGoZ/C54tlNsQh7+Bm+dg5I9V16Iy9AtlUsHYE8WdkxMuKHOi3H6rI+Y4pN0o/X1cm5QMN0sfh/gzynMTs1uCkAM4+8PwbzFTm9CnqQd9craR7ZdC+E0tOyLzOBKnJe6iDR9diOB/5vY80MJfWfYhwMVwf8md2wDJVwpbWGIKg0tha4tLILywt/jY8KXKz+F2aos7g2ef/4BWo/RxsvNSbgeaWpReg0/bqvt+hKggtYkKV1sLXG3L+Hd5Cy8HK5Y82b7UfRqtTj/vFYCLjQU/TuhIZmFIKhGGcgvo2MhZf2xugQY/Z+vCcJVPvkZ5n+x8TeGjeOLQzLwCVh0r/j3ULdDFIOGmMqTlRoh7FfEX/D5RWarBwQ9GLVU6HBvSrfPsgNIXKDtJCT63P2zc4MEZxccu7qIEAN2dnSTvmHl5cVeIP11qCXE6RzrlLgbAy8GSL+y/J8g8AWs7Z6V149bWI2tXaDWi+OSky5B4+ZbOubd8tXSE8euKj13UqfTAAmDtAv++ZY6Y/YuVyRbtvIpDi723srK1tLYIcd9yCzRk5mrIyCkgPTcfOwsz/FyUqSSy8gr4aX+kPiQ1crFhXNdGVV6D3JYqh4QbUaXiz8HyUcqHtpm10urS7FFjV1U2nQ7yMm4JQWnKVxM1BD1YfNzm95RWk6L9hQ9dTgo5do34oNH3rDseTVpOAX+Zv0mIybXSr2frAa+fL3797QClU3VprJzgzavFrze+rYQee5/CsFLY38XeS3ldVmuLEKJOknBTDgk3osplJ8NvT8HlwnvZPf+tzHFjUgeHU+t0oMkDUwty8jVsOxfP6b3ruHH9Kra6TOzJwsEkm2BHLU0ctLi7umA6ZGHx+d89pPz3sve+LawUfjV0y5cQotaScFMOCTfCIDQFsPldOLBIed30YaUVx8LOuHVVk8SiZR+O3eDE9eJlH+wtTXk41JthbX1o6+dUt4eVCyEMSsJNOSTcCIMKXwp/vqK0brg3Uyb8c/Y3dlXV6kJcOquOKcs+xKQWL/vQ0MWaR1v70KepOy19HIw6pFQIUftIuCmHhBthcNcOwYoxkBGn9CMZ8YOy5EI9o9Hq+OdyIr8fvcFfp2JKLPvgaG1GjyA3ega58kATN9zta9kcOkKIaifhphwSbkS1SIuG5WMg+iio1DBgFnR8tt6O3MnKU5Z9+Pt0HHsuJpCeU1Bif1NPOx5o4sYDTdxo18ipzsyoKoSoOhJuyiHhRlSb/BzlFtWJ5crrNk/CQ5/U+1E+BRot4ddS2Hn+JrvO3+TEjVRu/S1kba6mS4ALPQvDTiPXMhYqFULUKxJuyiHhRlQrnQ72L1Q6G+u04NsJHv8ZbN2NXVmNkZSZx+4LNwvDTgIJGbkl9vs5W/NAEzd6NnGjS2MXbC1k7lEh6iMJN+WQcCOM4sIWWDkBclOVeVue+EVZm0iUoNXqOBubxq7zCew8H8+RyGT9zKgAZmoV7Ro68UATd3o2caWZVx1f2FMIoSfhphwSboTRJFyEZU9A4gVlvaJHF0HL4cauqkbLyC1g/6VEdp1XWnaikrJK7Hezs6BHYafk7oGuuFRgunohRO0k4aYcEm6EUeWkwu/PwIXCBem6vwp9piszBIu7upqQqe+rs/9yYokRWCoVtPRx0N/CauPriKm6Dk6kKEQ9JeGmHBJuhNFpNbD1v7B3nvI6qD8M+0pZj0lUWG6BhiNXk9l54SY7I25yLja9xH47S1O6NXblgWAl7Pg4WhmpUiFEVZBwUw4JN6LGOPEbrJ0MBTnKwpVPLAPXQGNXVWvFpeWw6/xNdl1IYPeFm6Rk5ZfYH+huS88gNx4IdqOTvzOWZtJaJkRtIuGmHBJuRI0SfUyZDyfthtJyM/xbCAwzdlW1nkar4+SNVHZG3GTXhZsci0pGe8tvOgtTEzoFuOgnEQx0t5WOyULUcBJuyiHhRtQ46XHw65Nw7R9QmcCD/4Uuk+vthH+GkJqVz95LCfqwc+uyEADeDpb6eXW6BrriYGVmpEqFEGWRcFMOCTeiRirIhfVT4djPyutWT8Dgz8BMliWoajqdjgvxGfoRWP9cSSKvQKvfrzZR0cbXUR92Wvo4YCLrYAlhdBJuyiHhRtRYOh0c/BI2TgOdBnzaweO/gL2XsSur07LzNBy4Ujzc/PLNzBL7nYrWwWqirIUl62AJYRwSbsoh4UbUeJd3wG/jITsZbD2VCf8atDd2VfXGtaQsdl1Qhpvvu5hIem7JdbBCvOzpGeRK+0bOtPVzlLl1hKgmEm7KIeFG1ApJl2HZaLh5FtTm8PA8aD1a+uFUs3yNlmNRKfpWnZM3Uu84pqGLNW39nGjr50jbhk4Ee9jJ/DpCGICEm3JIuBG1Rm46rHoOItYrr4MfgofmgL23ceuqxxIyctlzIYH9lxI5GpXMhfiMO46xNlcT2sCRtg0daevnRBs/J5xtzI1QrRB1S60LN4sWLWL27NnExsYSGhrKggUL6Nix413PW758OaNGjeLRRx/ljz/+qNC1JNyIWkWrhd1zYOdHoC0AC3sIex/aPQUm0jpgbKlZ+Ry7lszRqBSORSUTHpVyx20sAH9XG9r4OdKuoRNt/Zxo4mGHWjopC1EptSrcrFixgrFjx/LFF1/QqVMn5s2bx2+//UZERATu7mWvnHz16lW6d+9OQEAAzs7OEm5E3RZ3Gta+DDcOK6/9uiijqdyCjVuXKEGj1XExPoMjkckcjVIet3dQBrC1MCXU16HwdpYTbfwccbSW1h0hylOrwk2nTp3o0KEDCxcuBECr1eLr68tLL73EW2+9Veo5Go2Gnj17MmHCBHbv3k1KSoqEG1H3aTVw6GvYMgPyM5W+OD3fgG5TwFQ+GGuq5Mw8wq+lcDQqmSORyRy/lkLmLWtiFWnsZqOEncLWnSB3WxmCLsQtak24ycvLw9rampUrVzJkyBD99nHjxpGSksKaNWtKPe+9997jxIkTrF69mvHjx5cbbnJzc8nNzdW/TktLw9fXV8KNqL1Srilz4hQtvukWAo/MB9+738oVxqfR6oiITde37ByLSuFKwp2tO3YWprT2c9QHnta+jjK5oKjXKhNuTKupplIlJCSg0Wjw8PAosd3Dw4Nz586Ves6ePXv45ptvCA8Pr9A1Zs2axYwZM+63VCFqDkdfGP0rnPod/npTGVH1TT/o+Cz0nQ4WdsauUJRDbaKimbc9zbzt+VfnhgAkZeZxrLBl52hUMsevpZKeW8DuCwnsvpAAKAPlAt1saevnpPTdaehIgKu07ghRGqOGm8pKT0/nySef5KuvvsLV1bVC50ybNo2pU6fqXxe13AhRq6lU0HI4NO4Dm/4Dx5fCwSVwbj08/Ck06W/sCkUlONuY0zfEg74hyh96BRot52LTORaldFY+EplMVFIWF+IzuBCfwYrD1wCwtzSlTWG/nbYNHWnt64idpbTuCFGrbkuFh4fTpk0b1Ori1Xy1WmXadBMTEyIiImjcuHG515Q+N6JOurQN/pwCKZHK6xbDYMCHYFt2p3xRu9xMz9WHnaNRyZy4nkJOvrbEMSoVBHvYFQYeZd6dAFcbWRRU1Am1ps8NKB2KO3bsyIIFCwAlrPj5+TF58uQ7OhTn5ORw8eLFEtveeecd0tPT+eyzz2jSpAnm5uV3rJRwI+qsvCzYMQv2LwSdFiwdof9MmfyvjsrXaDkXk86RyCR94LmenH3HcY7WZrTxLR6GHurriI1FrWq0FwKoZeFmxYoVjBs3jiVLltCxY0fmzZvHr7/+yrlz5/Dw8GDs2LH4+Pgwa9asUs+/W4fi20m4EXVe9DFl2HjsCeW1/wMweB44Bxi1LGF48ek5HI1MKWzhSeb49dQSi4ICmKgg2NNeadnxc6K5jz2N3Wwxk1mVRQ1XazoUAzz++OPcvHmTd999l9jYWFq3bs3GjRv1nYyjoqIwkcnKhKg47zYwcTscWATbZ8KVnbC4K/SeBp0ngdro/9sLA3G3s2RAC08GtPAEIK9Ay5mYNI5GFo/MupGSzdmYNM7GpPHLP1EAmKtNCPKwJcTLvvBhRzMve5l7R9RaRm+5qW7SciPqlcRLsG4KXNmlvPZsBY8sAO/WxqxKGFFsao4yDD0ymePXUzgbk05GKbMqA3g7WBLipYzsKgo+DZ2tZYSWMIpadVuqukm4EfWOTgfhS2HT25CTAio1dJkEvaaBubWxqxNGptXquJ6czZnC1pyzMWmciUkrtf8OKGtnNfW0u6WVx56mnnbSj0cYnISbcki4EfVWRrwyL87pVcprp0bKEg4BvYxZlaih0nLyOReTroSd6DTOxqYREZtO7m19eEDpr97IxYYQLztCPItberwcLGWklqgyEm7KIeFG1HsRG5UZjtNuKK9bj4F+/wfWzsatS9R4BRotVxMzOR2dxtnC4HM2Jo349NxSj3e0NiPEs7gfT4iXPUEetliYqks9XojySLgph4QbIYDcdNj6Xzj4FaADGzdlXpwWw2TYuKi0hIxcfdA5G5POmeg0Lt3MoEB758eLqYmKQHel83KzWzowu9haGKFyUZtIuCmHhBshbnHtIKx9CW4WLncS1B8e+kRZ4kGI+5BboOFCXIa+D09R8EnNzi/1eHc7ixIdl5t52eHvaotaOi+LQhJuyiHhRojbFOTBnrmwew5o8sDcFvq+Cx2eARO5fSCqjk6nIyY1R+nDE6P04zkbk87VxExK+ySyNDMh2MOuxIitpp52ssREPSXhphwSboQow80IZfK/aweU1w06KMPG3UOMW5eo8zJzCzgXm15itFZEbDpZeZpSj/d1trrllpZye8vH0UqGqNdxEm7KIeFGiHJotXDkW9j8PuSlg4kZ9JgKPV4DU+kTIaqPVqsjMimreLRWYfCJTs0p9XhLMxMCXG1p7G5LYzcbGrvZEuhui7+rDZZm0gJZF0i4KYeEGyEqIPUGbHgdIjYor12bwOD50LCLcesS9V5KVl5hH57ilp4LcRnkae4cog5K//gGTlY0drO95WFDY3dbXGzMZah6LSLhphwSboSoIJ0OzqyBv/4NGXHKtvZPQ9h7YOlg3NqEuEWBRsv15Gwuxmdw6WbRI5OL8RlldmAGcLAy07fyKC0+SvDxc7bGVNbaqnEk3JRDwo0QlZSdDJvfhaM/Kq/tvJQRVU0fMm5dQtyFTqcjKTOPSzczlcATXxx8riVnldqJGcBMraKhi01x8CkMPwFuNthLZ2ajkXBTDgk3QtyjK7vhz1cg6ZLyutmjMPBjsPM0bl1C3IOcfA1XEzO5FJ95S2tPBpfiM8nOL70jMyhD1pWwU9yvp7GbLZ72ltKh2cAk3JRDwo0Q9yE/G3Z+DHs/A50GLByg3wfQdqxM/ifqBK1WR0xazi2tPBn6AFTWTMygrLkVcGtLT2EAauQiHZqrioSbcki4EaIKxJ5UJv+LPqa8bthdWafKNdC4dQlhQGk5+Vy+mVky+NzM5GpCZqmzMYOS+X2drEvt2+MsHZorRcJNOSTcCFFFNAVwcAls+z/IzwK1BfR6E7q+DGrplyDqj3yNlmtJWfq+PfqOzfEZpOUUlHmeo7VZ8eitwtaeRq7WNHCyltaeUki4KYeEGyGqWPJVWPcqXNqmvPZoAY/MB592Ri1LCGPT6XQkZOTdcXvr0s0MbqRkl9mhGcDT3hI/F2v8nK1p6Gxd/NzFBidrs3rZ4iPhphwSboQwAJ0OTvwKG9+C7CRQmUCnF6DPf8DcxtjVCVHjZOdpuJKQWeL21qX4DCITM8ksY2bmIrYWpvg5F4Uda3wLvzZ0tsHL0RKzOjqMXcJNOSTcCGFAmQmw6W04sUJ57egHD8+FwDDj1iVELVE0fD0qKUt5JGYRWfg1KimL2LTSZ2guojZR4eNopYSfUlp+avO6XBJuyiHhRohqcGGLcqsqNUp53epx6D8LbFyMW5cQtVxOvobryVlEFoadyMQsriUVBqCkLPIKSp+puYizjbnS0lPY8uPnUhx+POxq9nB2CTflkHAjRDXJzYDtM+Gfz0GnBStn6D9TCTomdbPZXAhj0mp1xKfnEpmYWdzyk1QchJIy88o939zUBF8nKxq62Ohve91668vYnZwl3JRDwo0Q1ez6EWXYePxp5bVrE+g2BVqNlFFVQlSj9Jx8opIKW3oSS4afGynZaMoYzl7Ew96Chs42+j4+t7b8VMewdgk35ZBwI4QRaPJh33zY8xnkpirb7BtA15eUCQDNrY1bnxD1XIFGS3RKjhJ2kjKL+/sUhqCM3LKHtAPYmKvxc7HBz1lp+Qn2sGNYuwZVWqOEm3JIuBHCiHLS4PC3sH8RZMYr26xdlJFVHZ8BKyfj1ieEuINOpyM5K7+wlSdT3/ITWdgKFJN6ZyfnUF9H1kzqVqV1SLgph4QbIWqA/BwI/0VZxiElUtlmbgftn4Iuk2S9KiFqEaWTczZRSZn60V2e9pY890DjKr2OhJtySLgRogbRFMDp1bBnbnGfHLUFtB4N3V4G5wDj1ieEqDEk3JRDwo0QNZBOB+c3wZ5P4do/yjaVCTR/DLq/Cp4tjFufEMLoJNyUQ8KNEDWYTgeR+5SQc3FL8fag/tBjKvh1Nl5tQgijknBTDgk3QtQSMceV21Wn/wAKf035dVVCTmCYstyyEKLekHBTDgk3QtQyiZdg7zwIXwbafGWbZ0vldlWzIWAiqycLUR9IuCmHhBshaqm0aGUI+eHvID9T2eYcAN1egdBRYGph3PqEEAYl4aYcEm6EqOWykuDgl/DPF5CdrGyz81KGkLd7CixsjVufEMIgJNyUQ8KNEHVEbgYc/QH2LYT0aGWbpSN0eg46PQ/WzkYtTwhRtSTclEPCjRB1TEEunFgBe+ZB0iVlm5k1tBsPXSaDg48xqxNCVBEJN+WQcCNEHaXVwNm1sPtTiD2hbDMxg9DHodur4Bpo3PqEEPdFwk05JNwIUcfpdHBpK+yeC5F7CjeqoNkj0H0qeLc2ZnVCiHsk4aYcEm6EqEeuHVRacs7/VbytcR8l5DTqLnPlCFGLSLgph4QbIeqhuNNKn5xTv4NOo2xr0EEJOU0GgImJUcsTQtydhJtySLgRoh5Lvgp758Oxn0GTq2xzC1EmBGwxDNSmRi1PCFE2CTflkHAjhCA9Dg4shkPfQF66ss3RD7q+DG3+BWZWxq1PCHEHCTflkHAjhNDLToFDX8OBzyErQdlm4w6dX4AOT4Olg1HLE0IUk3BTDgk3Qog75GUpt6r2zYfUa8o2Cwcl4HR+EWzdjFufEELCTXkk3AghyqTJh5MrldXIEyKUbaaW0OZJ6PoSODU0bn1C1GMSbsoh4UYIcVdaLURsgD2fwo0jyjaVGlqOUDofuzc1bn1C1EMSbsoh4UYIUWE6HVzZpYScyzuKtzcZCK1GQOCDYCm/R4SoDpX5/K4RkzssWrSIRo0aYWlpSadOnTh48GCZx3711Vf06NEDJycnnJycCAsLK/d4IYS4ZyoVBDwAY9fAxG0QMhhQKZMCrpwAHwfAT48pnZLToo1drRCikNHDzYoVK5g6dSrvvfceR48eJTQ0lP79+xMfH1/q8Tt27GDUqFFs376d/fv34+vrS79+/bhx40Y1Vy6EqFd82sHjP8Okg9DtFXAJAm2+stTD+tfg0xD4sjfsmgPx55RWHyGEURj9tlSnTp3o0KEDCxcuBECr1eLr68tLL73EW2+9ddfzNRoNTk5OLFy4kLFjx971eLktJYSoMjfPQ8R6OLcBrt/WguwcAE0fguCHwLcjmKiNU6MQdURlPr+NOh1nXl4eR44cYdq0afptJiYmhIWFsX///gq9R1ZWFvn5+Tg7O5e6Pzc3l9zcXP3rtLS0+ytaCCGKuDVRHt1fhfRYiPhL6Yh8eQckXYZ9C5SHtSsED4CmD0NAL5kkUAgDM2q4SUhIQKPR4OHhUWK7h4cH586dq9B7vPnmm3h7exMWFlbq/lmzZjFjxoz7rlUIIcpl5wntn1IeuelwcSucWw8XNikTBB77WXmYWSuLdzZ9GJr0B+vS/zATQty7Wr2Qyocffsjy5cvZsWMHlpaWpR4zbdo0pk6dqn+dlpaGr69vdZUohKiPLOyg+RDlocmHyL1K0Dm3AdKuw7l1ykOlhoZdC29fDZJ5dISoIkYNN66urqjVauLi4kpsj4uLw9PTs9xz58yZw4cffsiWLVto1apVmcdZWFhgYWFRJfUKIUSlqc2UW1EBvWDgxxBzXLl1dW49xJ2Cq7uVx8a3wKMlNB2khB3PVspoLSFEpRl1tJS5uTnt2rVj69at+m1arZatW7fSpUuXMs/7+OOP+eCDD9i4cSPt27evjlKFEOL+qVTg3Rp6vw0v7IVXjkP/WdCwO6hMIO4k7PwIlvSEeS1hw7/h8k6l9UcIUWFGHy21YsUKxo0bx5IlS+jYsSPz5s3j119/5dy5c3h4eDB27Fh8fHyYNWsWAB999BHvvvsuS5cupVu3bvr3sbW1xdbW9q7Xk9FSQogaKTNR6Z9zbr3SX6cgu3ifpQM0GaDcugoMA4u7/64Toq6pNaOlAB5//HFu3rzJu+++S2xsLK1bt2bjxo36TsZRUVGYmBQ3MH3++efk5eUxfPjwEu/z3nvv8f7771dn6UIIUXVsXKD1aOWRn62MuDq3ThmBlZUIJ1YoD7WFcour6SBlpmQ7j7u9sxD1jtFbbqqbtNwIIWoVrQauHSzshLwekq/cslMFDToofXSaPgSuQUYrUwhDk7WlyiHhRghRa+l0cPNc4cir9RB9tOR+1ybFEwf6tAMTo09CL0SVkXBTDgk3Qog6Iy26eOTVld3KchBFbD0geKAyn45/TzCVUaOidpNwUw4JN0KIOiknFS5sLpw4cDPkpRfvM7dVOiI3fRiCHgQrR6OVKcS9knBTDgk3Qog6ryBXmTvn3AalZSc9pnifiSk06q7cumo6CBwaGK9OISpBwk05JNwIIeoVrRZijhX307l529I2zo2hUTdlrp1G3STsiBpLwk05JNwIIeq1xEtKyInYAFEHgNs+ApwaFQedht1kSQhRY0i4KYeEGyGEKJSdogScyD1wdS/EhINOW/IYB18l5BSFHecAWRZCGIWEm3JIuBFCiDLkpMG1f+DqHmWxz+hjoC0oeYydd3HQadQdXAIl7IhqIeGmHBJuhBCignIz4PpBpVUnci9cP1xyuDkoQ84bdi0OO25NJewIg5BwUw4JN0IIcY/ysuD6ISXoXN2rPNfkljzG2qUw7BT223FvLpMJiioh4aYcEm6EEKKK5OfAjSOFYWePskzErQt+Alg5gV/X4ltZni3BRG2cekWtJuGmHBJuhBDCQArylH46kXuUsBP1D+RnljzGwgH8OhcPP/cKBbXR13AWtYCEm3JIuBFCiGqiyYeY48UdlKMOQG5ayWPMbZWwU9Rnx7sNqM2MU6+o0STclEPCjRBCGIlWA7EnijsoR+5Vlo24lZk1+HYs7rPj007WxRKAhJtySbgRQogaQquBuNPFfXYi90F2UsljTC2hQYfiuXYadAAzK+PUK4xKwk05JNwIIUQNpdUqy0Pow85eyLxZ8hi1Ofi0L+6g7NsRzG2MU6+oVhJuyiHhRgghagmdDhIuFHdQvroXMmJLHmNiCt5twacteLYCr1bKXDvSb6fOkXBTDgk3QghRS+l0kHS5uFXn6l5Iu37ncWpzcA8pDDuhylfPFtLCU8tJuCmHhBshhKgjdDpIiVRGYcWcUEZmxZ6E3NRSDlYpS0V4tSpu4fEMBRuXai9b3BsJN+WQcCOEEHWYTgfJV5VRWTEnir/efjuriL3PLWGnsKXHoYEsIVEDSbgph4QbIYSohzLiC8PO8eLQk3S59GOtnEq27ni1Ulp9ZGZlo5JwUw4JN0IIIQBlFfS4UyVbeG6evXMldFDm3/FoXrKVx70ZmFlWf931lISbcki4EUIIUaaCXIg/W/K2VuypO5eRAGWklmvwbf14WoKlQ/XXXQ9IuCmHhBshhBCVotUot7Bijhd2Wi4MPrdPOFjEqdGdt7XsPKu15LpIwk05JNwIIYS4bzodpN0oeUsr9gSkXiv9eBv3ki08XqHg2AhMTKq17NpMwk05JNwIIYQwmKykO0dqJV4AnfbOYy3sldtYt/bjcfaX+XjKIOGmHBJuhBBCVKu8LGUNrVtHasWdAU1u6cdbuyjD0R18wdFP+erQABx9wcEPrJ3r5VD1ynx+m1ZTTUIIIUT9ZG4Nvh2URxFNPiScL9nCE3dSWSU9K1F5xBwv/f3MrG8JP4XBx8Gv+LmdN6jr98e7tNwIIYQQNUVOKqRcU/ruFH299XlG3N3fQ6UGe+/bWnx8i786+CqBq5aRlhshhBCiNrJ0AE8HZS2s0hTkQur1WwJP0fOowiB0A7T5xaGoLHX81peEGyGEEKK2MLUAl8bKozRardK6ow8810u2/KRcg7z0+7z15Qt2XjX61lfNrUwIIYQQlWNiAvZeysO3Y+nHZKfc1vITdcstsOtKOMrPUvoEJZwv/T1uvfWlDz8159aXhBshhBCiPrFyVB6eLUvfn5+jzOFze4tP0a2u2299RZXyHm5NYdI/BvwmyifhRgghhBDFzCzvcutLU3jr63pxX58S/X+uKS03RiThRgghhBAVZ1J4S8reu/RbXzqd0vHZiGTeZyGEEEJUHZXK6KulS7gRQgghRJ0i4UYIIYQQdYqEGyGEEELUKRJuhBBCCFGnSLgRQgghRJ0i4UYIIYQQdYqEGyGEEELUKRJuhBBCCFGnSLgRQgghRJ1SI8LNokWLaNSoEZaWlnTq1ImDBw+We/xvv/1G06ZNsbS0pGXLlmzYsKGaKhVCCCFETWf0cLNixQqmTp3Ke++9x9GjRwkNDaV///7Ex8eXevy+ffsYNWoUTz/9NMeOHWPIkCEMGTKEU6dOVXPlQgghhKiJVDqdTmfMAjp16kSHDh1YuHAhAFqtFl9fX1566SXeeuutO45//PHHyczMZN26dfptnTt3pnXr1nzxxRd3vV5aWhoODg6kpqZib29fdd+IEEIIIQymMp/fRm25ycvL48iRI4SFhem3mZiYEBYWxv79+0s9Z//+/SWOB+jfv3+Zx+fm5pKWllbiIYQQQoi6y9SYF09ISECj0eDh4VFiu4eHB+fOnSv1nNjY2FKPj42NLfX4WbNmMWPGjDu2S8gRQgghao+iz+2K3HAyaripDtOmTWPq1Kn61zdu3KBZs2b4+voasSohhBBC3Iv09HQcHBzKPcao4cbV1RW1Wk1cXFyJ7XFxcXh6epZ6jqenZ6WOt7CwwMLCQv/a1taWa9euYWdnh0qlus/voKS0tDR8fX25du2a9OepAeTnUbPIz6NmkZ9HzSM/k/LpdDrS09Px9va+67FGDTfm5ua0a9eOrVu3MmTIEEDpULx161YmT55c6jldunRh69atTJkyRb9t8+bNdOnSpULXNDExoUGDBvdberns7e3lH2YNIj+PmkV+HjWL/DxqHvmZlO1uLTZFjH5baurUqYwbN4727dvTsWNH5s2bR2ZmJk899RQAY8eOxcfHh1mzZgHwyiuv8MADD/DJJ5/w0EMPsXz5cg4fPsyXX35pzG9DCCGEEDWE0cPN448/zs2bN3n33XeJjY2ldevWbNy4Ud9pOCoqChOT4kFdXbt2ZenSpbzzzju8/fbbBAUF8ccff9CiRQtjfQtCCCGEqEGMHm4AJk+eXOZtqB07dtyxbcSIEYwYMcLAVVWehYUF7733Xok+PsJ45OdRs8jPo2aRn0fNIz+TqmP0SfyEEEIIIaqS0ZdfEEIIIYSoShJuhBBCCFGnSLgRQgghRJ0i4UYIIYQQdYqEmyqyaNEiGjVqhKWlJZ06deLgwYPGLqnemjVrFh06dMDOzg53d3eGDBlCRESEscsShT788ENUKlWJiThF9bpx4wb/+te/cHFxwcrKipYtW3L48GFjl1UvaTQapk+fjr+/P1ZWVjRu3JgPPvigQusnibJJuKkCK1asYOrUqbz33nscPXqU0NBQ+vfvT3x8vLFLq5d27tzJpEmTOHDgAJs3byY/P59+/fqRmZlp7NLqvUOHDrFkyRJatWpl7FLqreTkZLp164aZmRl//fUXZ86c4ZNPPsHJycnYpdVLH330EZ9//jkLFy7k7NmzfPTRR3z88ccsWLDA2KXVajIUvAp06tSJDh06sHDhQkBZQsLX15eXXnqJt956y8jViZs3b+Lu7s7OnTvp2bOnscuptzIyMmjbti2LFy/m//7v/2jdujXz5s0zdln1zltvvcXevXvZvXu3sUsRwMMPP4yHhwfffPONftuwYcOwsrLi559/NmJltZu03NynvLw8jhw5QlhYmH6biYkJYWFh7N+/34iViSKpqakAODs7G7mS+m3SpEk89NBDJf5fEdVv7dq1tG/fnhEjRuDu7k6bNm346quvjF1WvdW1a1e2bt3K+fPnATh+/Dh79uxh4MCBRq6sdqsRMxTXZgkJCWg0Gv1yEUU8PDw4d+6ckaoSRbRaLVOmTKFbt26yRIcRLV++nKNHj3Lo0CFjl1LvXb58mc8//5ypU6fy9ttvc+jQIV5++WXMzc0ZN26cscurd9566y3S0tJo2rQparUajUbD//73P8aMGWPs0mo1CTeiTps0aRKnTp1iz549xi6l3rp27RqvvPIKmzdvxtLS0tjl1HtarZb27dszc+ZMANq0acOpU6f44osvJNwYwa+//sovv/zC0qVLad68OeHh4UyZMgVvb2/5edwHCTf3ydXVFbVaTVxcXIntcXFxeHp6GqkqAcqaZevWrWPXrl00aNDA2OXUW0eOHCE+Pp62bdvqt2k0Gnbt2sXChQvJzc1FrVYbscL6xcvLi2bNmpXYFhISwu+//26kiuq3N954g7feeosnnngCgJYtWxIZGcmsWbMk3NwH6XNzn8zNzWnXrh1bt27Vb9NqtWzdupUuXboYsbL6S6fTMXnyZFavXs22bdvw9/c3dkn1Wt++fTl58iTh4eH6R/v27RkzZgzh4eESbKpZt27d7pga4fz58zRs2NBIFdVvWVlZmJiU/ChWq9VotVojVVQ3SMtNFZg6dSrjxo2jffv2dOzYkXnz5pGZmclTTz1l7NLqpUmTJrF06VLWrFmDnZ0dsbGxADg4OGBlZWXk6uofOzu7O/o72djY4OLiIv2gjODVV1+la9euzJw5k5EjR3Lw4EG+/PJLvvzyS2OXVi8NHjyY//3vf/j5+dG8eXOOHTvGp59+yoQJE4xdWq0mQ8GryMKFC5k9ezaxsbG0bt2a+fPn06lTJ2OXVS+pVKpSt3/33XeMHz++eosRperVq5cMBTeidevWMW3aNC5cuIC/vz9Tp05l4sSJxi6rXkpPT2f69OmsXr2a+Ph4vL29GTVqFO+++y7m5ubGLq/WknAjhBBCiDpF+twIIYQQok6RcCOEEEKIOkXCjRBCCCHqFAk3QgghhKhTJNwIIYQQok6RcCOEEEKIOkXCjRBCCCHqFAk3QgghhKhTJNwIIeo9lUrFH3/8YewyhBBVRMKNEMKoxo8fj0qluuMxYMAAY5cmhKilZOFMIYTRDRgwgO+++67ENgsLCyNVI4So7aTlRghhdBYWFnh6epZ4ODk5Acoto88//5yBAwdiZWVFQEAAK1euLHH+yZMn6dOnD1ZWVri4uPDss8+SkZFR4phvv/2W5s2bY2FhgZeXF5MnTy6xPyEhgaFDh2JtbU1QUBBr16417DcthDAYCTdCiBpv+vTpDBs2jOPHjzNmzBieeOIJzp49C0BmZib9+/fHycmJQ4cO8dtvv7Fly5YS4eXzzz9n0qRJPPvss5w8eZK1a9cSGBhY4hozZsxg5MiRnDhxgkH/374du7QOhWEcflN1sEFBKZY6uZU6tIsiRRdx0knQrUjWKhSXbgrt4qqjIDiKgoOTWAfHQnHSSf0HpCi4WEGXfg4XAkG83HvRxBt+DwRyzknC920vycnCgkqlkp6enkLtE8AXMQCIkOd51tPTY67rBo6trS0zM5Nk5XI5cM/U1JStrq6amdne3p4NDQ1Zp9Px109PTy2RSFi73TYzs9HRUdvY2Pi0Bkm2ubnpjzudjkmys7OzL+sTQHjYcwMgcrOzs9rd3Q3MDQ8P++fFYjGwViwWdXV1JUm6ublRoVCQ67r++vT0tLrdru7u7uQ4ju7v7zU3N/fbGvL5vH/uuq4GBwf18PDwry0BiBDhBkDkXNf98Jnoq/T39//RdX19fYGx4zjqdrvfURKAb8aeGwA/XqvV+jDO5XKSpFwup+vra728vPjrzWZTiURC2WxWAwMDGhsb08XFRag1A4gOb24ARO7t7U3tdjsw19vbq1QqJUk6Pj7WxMSEZmZmdHBwoMvLS+3v70uSSqWSarWaPM9TvV7X4+OjKpWKVlZWlE6nJUn1el3lclkjIyOan5/X8/Ozms2mKpVKuI0CCAXhBkDkGo2GMplMYC6bzer29lbSrz+Zjo6OtLa2pkwmo8PDQ42Pj0uSksmkzs/Ptb6+rsnJSSWTSS0tLWl7e9t/lud5en191c7OjqrVqlKplJaXl8NrEECoHDOzqIsAgM84jqOTkxMtLi5GXQqA/wR7bgAAQKwQbgAAQKyw5wbAj8aXcwB/izc3AAAgVgg3AAAgVgg3AAAgVgg3AAAgVgg3AAAgVgg3AAAgVgg3AAAgVgg3AAAgVt4Bg+jkeeaIExQAAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"loss = plt.plot(bin_history.epoch, bin_history.history['loss'], label='bin-loss')\n",
"plt.plot(bin_history.epoch, bin_history.history['val_loss'], '--', color=loss[0].get_color(), label='bin-val_loss')\n",
"\n",
"loss = plt.plot(int_history.epoch, int_history.history['loss'], label='int-loss')\n",
"plt.plot(int_history.epoch, int_history.history['val_loss'], '--', color=loss[0].get_color(), label='int-val_loss')\n",
"\n",
"plt.legend()\n",
"plt.xlabel('Epoch')\n",
"plt.ylabel('CE/token')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0kHgPE_YwHvp"
},
"source": [
"You are nearly ready to train your model.\n",
"\n",
"As a final preprocessing step, you will apply the `TextVectorization` layers you created earlier to the training, validation, and test sets:"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:00.577885Z",
"iopub.status.busy": "2024-08-16T07:39:00.577611Z",
"iopub.status.idle": "2024-08-16T07:39:00.848952Z",
"shell.execute_reply": "2024-08-16T07:39:00.848312Z"
},
"id": "46LeHmnD55wJ"
},
"outputs": [],
"source": [
"binary_train_ds = raw_train_ds.map(lambda x,y: (binary_vectorize_layer(x), y))\n",
"binary_val_ds = raw_val_ds.map(lambda x,y: (binary_vectorize_layer(x), y))\n",
"binary_test_ds = raw_test_ds.map(lambda x,y: (binary_vectorize_layer(x), y))\n",
"\n",
"int_train_ds = raw_train_ds.map(lambda x,y: (int_vectorize_layer(x), y))\n",
"int_val_ds = raw_val_ds.map(lambda x,y: (int_vectorize_layer(x), y))\n",
"int_test_ds = raw_test_ds.map(lambda x,y: (int_vectorize_layer(x), y))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NZo_OTxD3ItL"
},
"source": [
"### Export the model"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:00.852730Z",
"iopub.status.busy": "2024-08-16T07:39:00.852460Z",
"iopub.status.idle": "2024-08-16T07:39:01.239999Z",
"shell.execute_reply": "2024-08-16T07:39:01.239369Z"
},
"id": "HYteWp9fykbP"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:Assets written to: bin.tf/assets\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:tensorflow:Assets written to: bin.tf/assets\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Saved artifact at 'bin.tf'. The following endpoints are available:\n",
"\n",
"* Endpoint 'serve'\n",
" Args:\n",
" args_0: string Tensor, shape=(None,)\n",
" Returns:\n",
" float32 Tensor, shape=(None, 4)\n"
]
}
],
"source": [
"binary_model.export('bin.tf')"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:01.243490Z",
"iopub.status.busy": "2024-08-16T07:39:01.243194Z",
"iopub.status.idle": "2024-08-16T07:39:01.349369Z",
"shell.execute_reply": "2024-08-16T07:39:01.348698Z"
},
"id": "OPD0WE_vy-dT"
},
"outputs": [],
"source": [
"loaded = tf.saved_model.load('bin.tf')"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:01.352726Z",
"iopub.status.busy": "2024-08-16T07:39:01.352465Z",
"iopub.status.idle": "2024-08-16T07:39:01.510527Z",
"shell.execute_reply": "2024-08-16T07:39:01.509767Z"
},
"id": "xFoBg53DzE2s"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"1/1 [==============================] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"1/1 [==============================] - 0s 114ms/step\n"
]
},
{
"data": {
"text/plain": [
"array([[-0.11534691, 0.01791038, -0.58859897, 0.3795665 ]],\n",
" dtype=float32)"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"binary_model.predict(['How do you sort a list?'])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:01.513631Z",
"iopub.status.busy": "2024-08-16T07:39:01.513379Z",
"iopub.status.idle": "2024-08-16T07:39:01.549446Z",
"shell.execute_reply": "2024-08-16T07:39:01.548822Z"
},
"id": "Cx5aIBm3zVQ0"
},
"outputs": [
{
"data": {
"text/plain": [
"array([[-0.11534691, 0.01791038, -0.58859897, 0.3795665 ]],\n",
" dtype=float32)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loaded.serve(tf.constant(['How do you sort a list?'])).numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0QDVfii_4slI"
},
"source": [
"\n",
"Including the text preprocessing logic inside your model enables you to export a model for production that simplifies deployment, and reduces the potential for [train/test skew](https://developers.google.com/machine-learning/guides/rules-of-ml#training-serving_skew).\n",
"\n",
"There is a performance difference to keep in mind when choosing where to apply `tf.keras.layers.TextVectorization`. Using it outside of your model enables you to do asynchronous CPU processing and buffering of your data when training on GPU. So, if you're training your model on the GPU, you probably want to go with this option to get the best performance while developing your model, then switch to including the `TextVectorization` layer inside your model when you're ready to prepare for deployment.\n",
"\n",
"Visit the [Save and load models](../keras/save_and_load.ipynb) tutorial to learn more about saving models."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p4cvuFzavTRy"
},
"source": [
"\n",
"\n",
"## Example 2: Predict the author of Iliad translations"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "fOlJ22508RIe"
},
"source": [
"The following provides an example of using `tf.data.TextLineDataset` to load examples from text files, and [TensorFlow Text](https://www.tensorflow.org/text) to preprocess the data. You will use three different English translations of the same work, Homer's Iliad, and train a model to identify the translator given a single line of text."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "cu2ruJMG9vnY"
},
"source": [
"To implement this task you'll use some lower level tools.\n",
"\n",
"* You'll use `tf.data.TextLineDataset` to load text-lines from files.\n",
"* You'll implement your own version of `keras.layers.TextVectorization` using:\n",
" * `text.UnicodeScriptTokenizer` - to convert strings to tokens.\n",
" * `tf.lookup.StaticVocabularyTable` - to convert tokens to integer ids.\n",
"* You'll maximize performance by placing the text processing in the dataset pipeline, so it can run in parallel with the model training."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-pCgKbOSk7kU"
},
"source": [
"### Download and explore the dataset\n",
"\n",
"The texts of the three translations are by:\n",
"\n",
"- [William Cowper](https://en.wikipedia.org/wiki/William_Cowper): [text](https://storage.googleapis.com/download.tensorflow.org/data/illiad/cowper.txt)\n",
"- [Edward, Earl of Derby](https://en.wikipedia.org/wiki/Edward_Smith-Stanley,_14th_Earl_of_Derby): [text](https://storage.googleapis.com/download.tensorflow.org/data/illiad/derby.txt)\n",
"- [Samuel Butler](https://en.wikipedia.org/wiki/Samuel_Butler_%28novelist%29): [text](https://storage.googleapis.com/download.tensorflow.org/data/illiad/butler.txt)\n",
"\n",
"The text files used in this tutorial have undergone some typical preprocessing tasks like removing document header and footer, line numbers and chapter titles.\n",
"\n",
"Download these lightly munged files locally:"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:01.553209Z",
"iopub.status.busy": "2024-08-16T07:39:01.552926Z",
"iopub.status.idle": "2024-08-16T07:39:02.026596Z",
"shell.execute_reply": "2024-08-16T07:39:02.025966Z"
},
"id": "4YlKQthEYlFw"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/cowper.txt\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 8192/815980 [..............................] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"815980/815980 [==============================] - 0s 0us/step\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/derby.txt\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 8192/809730 [..............................] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"809730/809730 [==============================] - 0s 0us/step\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Downloading data from https://storage.googleapis.com/download.tensorflow.org/data/illiad/butler.txt\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 8192/807992 [..............................] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"807992/807992 [==============================] - 0s 0us/step\n"
]
},
{
"data": {
"text/plain": [
"[PosixPath('/home/kbuilder/.keras/datasets/flower_photos.tar'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/butler.txt'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/fashion-mnist'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/cowper.txt'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/flower_photos.tgz'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/mnist.npz'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/HIGGS.csv.gz'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/derby.txt'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/facades.tar.gz'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/train.csv'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/jena_climate_2009_2016.csv'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/iris_test.csv'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/cats_and_dogs_filtered'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/jena_climate_2009_2016.csv.zip'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/heart.csv'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/facades'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/cifar-10-batches-py'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/kandinsky5.jpg'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/320px-Felis_catus-cat_on_snow.jpg'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/iris_training.csv'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/cats_and_dogs.zip'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/194px-New_East_River_Bridge_from_Brooklyn_det.4a09796u.jpg'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/Red_sunflower'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/cifar-10-batches-py.tar.gz'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/YellowLabradorLooking_new.jpg'),\n",
" PosixPath('/home/kbuilder/.keras/datasets/flower_photos')]"
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"DIRECTORY_URL = 'https://storage.googleapis.com/download.tensorflow.org/data/illiad/'\n",
"FILE_NAMES = ['cowper.txt', 'derby.txt', 'butler.txt']\n",
"\n",
"for name in FILE_NAMES:\n",
" text_dir = utils.get_file(name, origin=DIRECTORY_URL + name)\n",
"\n",
"parent_dir = pathlib.Path(text_dir).parent\n",
"list(parent_dir.iterdir())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "M8PHK5J_cXE5"
},
"source": [
"### Load the dataset\n",
"\n",
"Previously, with `tf.keras.utils.text_dataset_from_directory` all contents of a file were treated as a single example. Here, you will use `tf.data.TextLineDataset`, which is designed to create a `tf.data.Dataset` from a text file where each example is a line of text from the original file. `TextLineDataset` is useful for text data that is primarily line-based (for example, poetry or error logs).\n",
"\n",
"Iterate through these files, loading each one into its own dataset. Each example needs to be individually labeled, so use `Dataset.map` to apply a labeler function to each one. This will iterate over every example in the dataset, returning (`example, label`) pairs."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.029896Z",
"iopub.status.busy": "2024-08-16T07:39:02.029637Z",
"iopub.status.idle": "2024-08-16T07:39:02.032909Z",
"shell.execute_reply": "2024-08-16T07:39:02.032278Z"
},
"id": "YIIWIdPXgk7I"
},
"outputs": [],
"source": [
"def labeler(example, index):\n",
" return example, tf.cast(index, tf.int64)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.035882Z",
"iopub.status.busy": "2024-08-16T07:39:02.035649Z",
"iopub.status.idle": "2024-08-16T07:39:02.107778Z",
"shell.execute_reply": "2024-08-16T07:39:02.107189Z"
},
"id": "8Ajx7AmZnEg3"
},
"outputs": [],
"source": [
"labeled_data_sets = []\n",
"\n",
"for i, file_name in enumerate(FILE_NAMES):\n",
" lines_dataset = tf.data.TextLineDataset(str(parent_dir/file_name))\n",
" labeled_dataset = lines_dataset.map(lambda ex: labeler(ex, i))\n",
" labeled_data_sets.append(labeled_dataset)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "wPOsVK1e9NGM"
},
"source": [
"Next, you'll combine these labeled datasets into a single dataset using `Dataset.concatenate`, and shuffle it with `Dataset.shuffle`:\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.111017Z",
"iopub.status.busy": "2024-08-16T07:39:02.110793Z",
"iopub.status.idle": "2024-08-16T07:39:02.113927Z",
"shell.execute_reply": "2024-08-16T07:39:02.113329Z"
},
"id": "6jAeYkTIi9-2"
},
"outputs": [],
"source": [
"BUFFER_SIZE = 50000\n",
"BATCH_SIZE = 64\n",
"VALIDATION_SIZE = 5000"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.116888Z",
"iopub.status.busy": "2024-08-16T07:39:02.116477Z",
"iopub.status.idle": "2024-08-16T07:39:02.122585Z",
"shell.execute_reply": "2024-08-16T07:39:02.121918Z"
},
"id": "Qd544E-Sh63L"
},
"outputs": [],
"source": [
"all_labeled_data = labeled_data_sets[0]\n",
"for labeled_dataset in labeled_data_sets[1:]:\n",
" all_labeled_data = all_labeled_data.concatenate(labeled_dataset)\n",
"\n",
"all_labeled_data = all_labeled_data.shuffle(\n",
" BUFFER_SIZE, reshuffle_each_iteration=False)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "r4JEHrJXeG5k"
},
"source": [
"Print out a few examples as before. The dataset hasn't been batched yet, hence each entry in `all_labeled_data` corresponds to one data point:"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.125644Z",
"iopub.status.busy": "2024-08-16T07:39:02.125422Z",
"iopub.status.idle": "2024-08-16T07:39:02.780213Z",
"shell.execute_reply": "2024-08-16T07:39:02.779563Z"
},
"id": "gywKlN0xh6u5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sentence: b'and Proto, Pherusa and Dynamene, Dexamene, Amphinome and Callianeira,'\n",
"Label: 2\n",
"Sentence: b\"Far from my sire and friends, in Lemnos' isle.\"\n",
"Label: 1\n",
"Sentence: b'Sarpedon, as a lion on a herd:'\n",
"Label: 1\n",
"Sentence: b'shook the dust from out of their manes, and bore their chariot swiftly'\n",
"Label: 2\n",
"Sentence: b'with ease, had not Phoebus Apollo been angry, and in the guise of'\n",
"Label: 2\n",
"Sentence: b'As may assuage Achilles, and prevail'\n",
"Label: 0\n",
"Sentence: b'should have been hurled in vain, and withdrew under cover of his men.'\n",
"Label: 2\n",
"Sentence: b'drove straight at Patroclus. Patroclus then sprang from his chariot to'\n",
"Label: 2\n",
"Sentence: b\"Me, Menela\\xc3\\xbcs, by Minerva's aid,\"\n",
"Label: 0\n",
"Sentence: b'As he spoke Patroclus put on his armour. First he greaved his legs with'\n",
"Label: 2\n"
]
}
],
"source": [
"for text, label in all_labeled_data.take(10):\n",
" print(\"Sentence: \", text.numpy())\n",
" print(\"Label:\", label.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5rrpU2_sfDh0"
},
"source": [
"### Prepare the dataset for training\n",
"\n",
"Instead of using `tf.keras.layers.TextVectorization` to preprocess the text dataset, you will now use the lower-level TensorFlow Text APIs to standardize and tokenize the data, build a vocabulary and use `tf.lookup.StaticVocabularyTable` to map tokens to integers to feed to the model. (Learn more about [TensorFlow Text](https://www.tensorflow.org/text)).\n",
"\n",
"Define a function to convert the text to lower-case and tokenize it:\n",
"\n",
"- TensorFlow Text provides various tokenizers. In this example, you will use the `text.UnicodeScriptTokenizer` to tokenize the dataset.\n",
"- You will use `Dataset.map` to apply the tokenization to the dataset."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.784098Z",
"iopub.status.busy": "2024-08-16T07:39:02.783442Z",
"iopub.status.idle": "2024-08-16T07:39:02.788029Z",
"shell.execute_reply": "2024-08-16T07:39:02.787427Z"
},
"id": "gX6opNxnjgkH"
},
"outputs": [],
"source": [
"class MyTokenizer(tf.keras.layers.Layer):\n",
" def __init__(self):\n",
" super().__init__()\n",
" self.tokenizer = tf_text.UnicodeScriptTokenizer()\n",
"\n",
" def call(self, text):\n",
" lower_case = tf_text.case_fold_utf8(text)\n",
" result = self.tokenizer.tokenize(lower_case)\n",
" # If you pass a batch of strings, it will return a RaggedTensor.\n",
" if isinstance(result, tf.RaggedTensor):\n",
" # Convert to dense 0-padded.\n",
" result = result.to_tensor()\n",
" return result"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.790842Z",
"iopub.status.busy": "2024-08-16T07:39:02.790591Z",
"iopub.status.idle": "2024-08-16T07:39:02.795793Z",
"shell.execute_reply": "2024-08-16T07:39:02.795166Z"
},
"id": "v4DpQW-Y12rm"
},
"outputs": [],
"source": [
"tokenizer = MyTokenizer()"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:02.798686Z",
"iopub.status.busy": "2024-08-16T07:39:02.798432Z",
"iopub.status.idle": "2024-08-16T07:39:04.317794Z",
"shell.execute_reply": "2024-08-16T07:39:04.317139Z"
},
"id": "vzUrAzOq31QL"
},
"outputs": [
{
"data": {
"text/plain": [
"<_MapDataset element_spec=(TensorSpec(shape=(None,), dtype=tf.string, name=None), TensorSpec(shape=(), dtype=tf.int64, name=None))>"
]
},
"execution_count": 40,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tokenized_ds = all_labeled_data.map(lambda text, label: (tokenizer(text), label))\n",
"tokenized_ds"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jx4Q2i8XLV7o"
},
"source": [
"You can iterate over the dataset and print out a few tokenized examples:\n"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:04.321387Z",
"iopub.status.busy": "2024-08-16T07:39:04.321139Z",
"iopub.status.idle": "2024-08-16T07:39:05.365479Z",
"shell.execute_reply": "2024-08-16T07:39:05.364787Z"
},
"id": "S0cWZcWjkQAc"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"tf.Tensor(\n",
"[b'and' b'proto' b',' b'pherusa' b'and' b'dynamene' b',' b'dexamene' b','\n",
" b'amphinome' b'and' b'callianeira' b','], shape=(13,), dtype=string)\n",
"\n",
"tf.Tensor(2, shape=(), dtype=int64)\n"
]
}
],
"source": [
"for tokens, label in tokenized_ds.take(1):\n",
" break\n",
"\n",
"print(tokens)\n",
"print()\n",
"print(label)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "JPd4PsskJ_Xt"
},
"source": [
"Next, you will build a vocabulary by sorting tokens by frequency and keeping the top `VOCAB_SIZE` tokens:"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:05.369637Z",
"iopub.status.busy": "2024-08-16T07:39:05.368989Z",
"iopub.status.idle": "2024-08-16T07:39:08.220551Z",
"shell.execute_reply": "2024-08-16T07:39:08.219830Z"
},
"id": "FqYVv8LMnHKW"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First five vocab entries: [b',', b'the', b'and', b\"'\", b'of']\n",
"\n"
]
}
],
"source": [
"tokenized_ds = tokenized_ds.cache().prefetch(tf.data.AUTOTUNE)\n",
"\n",
"vocab_count = collections.Counter()\n",
"for toks, labels in tokenized_ds.ragged_batch(1000):\n",
" toks = tf.reshape(toks, [-1])\n",
" for tok in toks.numpy():\n",
" vocab_count[tok] += 1\n",
"\n",
"vocab = [tok for tok, count in vocab_count.most_common(VOCAB_SIZE)]\n",
"\n",
"print(\"First five vocab entries:\", vocab[:5])\n",
"print()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "PyKSsaNAKi17"
},
"source": [
"To convert the tokens into integers, use the `vocab` set to create a `tf.lookup.StaticVocabularyTable`. You will map tokens to integers with `0` reserved for padding, and `n+1` reserved to denote an out-of-vocabulary (OOV) token."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.224150Z",
"iopub.status.busy": "2024-08-16T07:39:08.223881Z",
"iopub.status.idle": "2024-08-16T07:39:08.229053Z",
"shell.execute_reply": "2024-08-16T07:39:08.228421Z"
},
"id": "UYB3t-jUhdYB"
},
"outputs": [],
"source": [
"class MyVocabTable(tf.keras.layers.Layer):\n",
" def __init__(self, vocab):\n",
" super().__init__()\n",
" self.keys = [''] + vocab\n",
" self.values = range(len(self.keys))\n",
"\n",
" self.init = tf.lookup.KeyValueTensorInitializer(\n",
" self.keys, self.values, key_dtype=tf.string, value_dtype=tf.int64)\n",
"\n",
" num_oov_buckets = 1\n",
"\n",
" self.table = tf.lookup.StaticVocabularyTable(self.init, num_oov_buckets)\n",
"\n",
" def call(self, x):\n",
" result = self.table.lookup(x)\n",
" return result"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "laUBoirZ55Sp"
},
"source": [
"Try it on a dummy vocabulary:"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.232094Z",
"iopub.status.busy": "2024-08-16T07:39:08.231858Z",
"iopub.status.idle": "2024-08-16T07:39:08.244193Z",
"shell.execute_reply": "2024-08-16T07:39:08.243562Z"
},
"id": "kCBo2yFHD7y62"
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vocab_table = MyVocabTable(['a','b','c'])\n",
"vocab_table(tf.constant([''] + list('abcdefghi')))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "yvXh1oGo6CEq"
},
"source": [
"Create one for the real vocabulary:"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.247247Z",
"iopub.status.busy": "2024-08-16T07:39:08.247017Z",
"iopub.status.idle": "2024-08-16T07:39:08.316167Z",
"shell.execute_reply": "2024-08-16T07:39:08.315577Z"
},
"id": "zPsRw1UD6u-q"
},
"outputs": [],
"source": [
"vocab_table = MyVocabTable(vocab)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Z5F-EiBpOADE"
},
"source": [
"Finally, define a layer to standardize, tokenize and vectorize the dataset using the tokenizer and lookup table:"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.319221Z",
"iopub.status.busy": "2024-08-16T07:39:08.318988Z",
"iopub.status.idle": "2024-08-16T07:39:08.357355Z",
"shell.execute_reply": "2024-08-16T07:39:08.356764Z"
},
"id": "8ClQM4xxpo-s"
},
"outputs": [],
"source": [
"preprocess_text = tf.keras.Sequential([\n",
" tokenizer,\n",
" vocab_table\n",
"])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "v6S5Qyabi-vo"
},
"source": [
"You can try this on a single example to print the output:"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.361004Z",
"iopub.status.busy": "2024-08-16T07:39:08.360615Z",
"iopub.status.idle": "2024-08-16T07:39:08.948698Z",
"shell.execute_reply": "2024-08-16T07:39:08.947964Z"
},
"id": "jgxPZaxUuTbk"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sentence: b'and Proto, Pherusa and Dynamene, Dexamene, Amphinome and Callianeira,'\n",
"Vectorized sentence: [ 3 7805 1 7806 3 7807 1 7808 1 7809 3 9790 1]\n"
]
}
],
"source": [
"example_text, example_label = next(iter(all_labeled_data))\n",
"print(\"Sentence: \", example_text.numpy())\n",
"vectorized_text = preprocess_text(example_text)\n",
"print(\"Vectorized sentence: \", vectorized_text.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "p9qHM0v8k_Mg"
},
"source": [
"Now create a dataset pipeline that will process the text on the fly using `Dataset.map`:"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:08.952107Z",
"iopub.status.busy": "2024-08-16T07:39:08.951853Z",
"iopub.status.idle": "2024-08-16T07:39:11.045650Z",
"shell.execute_reply": "2024-08-16T07:39:11.044929Z"
},
"id": "KmQVsAgJ-RM0"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Ids: [ 3 7805 1 7806 3 7807 1 7808 1 7809 3 9790 1]\n",
"Label: 2\n"
]
}
],
"source": [
"all_encoded_data = all_labeled_data.map(lambda text, labels:(preprocess_text(text), labels))\n",
"\n",
"for ids, label in all_encoded_data.take(1):\n",
" break\n",
"\n",
"print(\"Ids: \", ids.numpy())\n",
"print(\"Label: \", label.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_YZToSXSm0qr"
},
"source": [
"### Split the dataset into training and test sets\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "itxIJwkrUXgv"
},
"source": [
"The Keras `TextVectorization` layer also batches and pads the vectorized data. Padding is required because the examples inside of a batch need to be the same size and shape, but the examples in these datasets are not all the same size—each line of text has a different number of words.\n",
"\n",
"`tf.data.Dataset` supports splitting and padded-batching datasets:"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:11.049605Z",
"iopub.status.busy": "2024-08-16T07:39:11.049072Z",
"iopub.status.idle": "2024-08-16T07:39:11.060856Z",
"shell.execute_reply": "2024-08-16T07:39:11.060268Z"
},
"id": "r-rmbijQh6bf"
},
"outputs": [],
"source": [
"train_data = all_encoded_data.skip(VALIDATION_SIZE).shuffle(BUFFER_SIZE).padded_batch(BATCH_SIZE)\n",
"validation_data = all_encoded_data.take(VALIDATION_SIZE).padded_batch(BATCH_SIZE)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "m-wmFq8uW1zS"
},
"source": [
"Now, `validation_data` and `train_data` are not collections of (`example, label`) pairs, but collections of batches. Each batch is a pair of (*many examples*, *many labels*) represented as arrays.\n",
"\n",
"To illustrate this:"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:11.064618Z",
"iopub.status.busy": "2024-08-16T07:39:11.063972Z",
"iopub.status.idle": "2024-08-16T07:39:12.153800Z",
"shell.execute_reply": "2024-08-16T07:39:12.153056Z"
},
"id": "kMslWfuwoqpB"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Text batch shape: (64, 18)\n",
"Label batch shape: (64,)\n",
"First text example: tf.Tensor(\n",
"[ 3 7805 1 7806 3 7807 1 7808 1 7809 3 9790 1 0\n",
" 0 0 0 0], shape=(18,), dtype=int64)\n",
"First label example: tf.Tensor(2, shape=(), dtype=int64)\n"
]
}
],
"source": [
"sample_text, sample_labels = next(iter(validation_data))\n",
"print(\"Text batch shape: \", sample_text.shape)\n",
"print(\"Label batch shape: \", sample_labels.shape)\n",
"print(\"First text example: \", sample_text[0])\n",
"print(\"First label example: \", sample_labels[0])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "h44Ox11OYLP-"
},
"source": [
"Configure the datasets for better performance as before:"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:12.157374Z",
"iopub.status.busy": "2024-08-16T07:39:12.157110Z",
"iopub.status.idle": "2024-08-16T07:39:12.161840Z",
"shell.execute_reply": "2024-08-16T07:39:12.161325Z"
},
"id": "BpT0b_7mYRXV"
},
"outputs": [],
"source": [
"train_data = train_data.prefetch(tf.data.AUTOTUNE)\n",
"validation_data = validation_data.prefetch(tf.data.AUTOTUNE)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "K8SUhGFNsmRi"
},
"source": [
"### Train the model\n",
"\n",
"You can train a model on this dataset as before:"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "UI4I6_Sa0vWu"
},
"source": [
"Since this text vectorization adds `0` for padding and `n+1` for out-of-vocabulary (OOV) tokens, the vocabulary size has increased by two:"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:12.165453Z",
"iopub.status.busy": "2024-08-16T07:39:12.165008Z",
"iopub.status.idle": "2024-08-16T07:39:12.214495Z",
"shell.execute_reply": "2024-08-16T07:39:12.213805Z"
},
"id": "ClUFxHh47dtJ"
},
"outputs": [],
"source": [
"model = create_model(vocab_size=VOCAB_SIZE+2, num_labels=3)\n",
"\n",
"model.compile(\n",
" optimizer='adam',\n",
" loss=losses.SparseCategoricalCrossentropy(from_logits=True),\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:12.217476Z",
"iopub.status.busy": "2024-08-16T07:39:12.217250Z",
"iopub.status.idle": "2024-08-16T07:39:12.381354Z",
"shell.execute_reply": "2024-08-16T07:39:12.380501Z"
},
"id": "xHpqtP6b7fPl"
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAJzCAYAAACmgNGKAAAABmJLR0QA/wD/AP+gvaeTAAAgAElEQVR4nOzde1RTZ7o/8G+4hRBCwMhFKCpqtWtZm1q0SitFxIFaLygFsRWnPTN6XO2xlFG7qh2ts8bbaJnT9kxt1TpOp+pY1C5dg7fW8WjXoPEIVqBqvRRHrdwE5JJQQCnP7w9/yRB2AknMzibh+azFH3n3u/f7vPuWh+z3TWRERGCMMcYYE8deL6kjYIwxxphn42SDMcYYY6LiZIMxxhhjouJkgzHGGGOi8pE6AGsyMjKkDoExxhhzG3FxcVi8eLHUYVjUaz/Z2LdvH27fvi11GIy5Jb5+XOP27dvYt2+f1GEwhjNnzkCn00kdhlWy3jr1VSaTIS8vD7Nnz5Y6FMbcDl8/rrFnzx5kZmail95GWR9ifBqwd+9eiSOxiKe+MsYYY0xcnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGw4KDc3FzKZDDKZDI888ohL2vziiy9Mbfr7+zu9fm90+PBhDB8+HD4+vXaWNmN22blzp+m6lMlkCAwMtFjv5s2bmDFjBpqamlBbW2u2zujRo9Ha2ipYp2s9mUyGMWPGiN0l0XhSv5ctW4a8vDyryzrHPn78eBdHJz5ONhy0dOlSEBG0Wq3L2pwzZw6ICElJSQ9d32Aw4NFHH8W0adOcHaZTlJWVYcaMGVi+fDmqq6sfenu9vb+9Fe838XzyyScgIhgMBsGy4uJijBkzBsnJyQgKCkL//v1BRCgsLDQtz8nJEaxnrKfT6aDRaEBEKCoqEr0vYvGkfi9YsADLly/HypUrBcv+8Ic/gIhARPD29pYgOvFxstFHERE6OjrQ0dEhdSgWrVy5Es888wzOnTsHlUr10Nvr7f3tLDAwEBMmTJA6DAC836TQ1NSE6dOn48UXX8SiRYsEy+VyOTQaDbZs2YLdu3dLEKE03L3fQ4cOxf79+7F27Vrs2bNH6nBcjj+b7qNUKhXKysqkDsOqP//5z1AoFE7bXm/vb2/F+831Nm7ciKqqKrz77rsWl/v7+2PXrl144YUXsHDhQsTGxmL48OEujtL1PKHfWq0W6enpWLJkCdLS0vrU42H+ZIP1Ss5MNBhzF0SEbdu2Ydy4cYiMjLRaLyUlBStWrIBer0dGRobFcQyeyBP6PWvWLNy+fRuHDh2SOhSX8qhko6amBtnZ2Rg8eDD8/PwQGhqKtLQ0FBcXm+ocOHDAbCDOzZs3kZmZCZVKBY1Gg3nz5qG+vh43btzA9OnToVKpMGDAACxYsAB6vd5q25cvX8bUqVOhVqsREBCAxMREnDp1yqEYO29z5syZUKvVUCqViI+PR0FBQbcx2FK/6z4wXrBdy2/cuIHMzEwEBwdDo9Fg2rRpFv/L7dxuQEAAnn76aRw8eBCTJ082bWv+/PlW4xabs/rbdVBwYWEhkpKSoFKpLB7zNWvWmOp3/nj/6NGjpvL+/fsLtt/c3IxTp06Z6kj13w/vN9crKSlBdXW1TWPBVq1aheTkZJSWluKNN96waft1dXVYvHgxhg4dCj8/P4SEhGDKlCk4ceKEqY6j9wF77m0Pw937/eSTTwIAvvrqKwd678aolwJAeXl5NtevqKigQYMGUXh4OB06dIj0ej1duHCBEhISyN/fn06fPm1WPzU1lQBQWloaFRUVkcFgoM8//5wA0JQpUyg1NZXOnz9Per2eNm/eTADoN7/5jaBdrVZLarWaEhMTqaCggPR6PRUWFtITTzxBfn5+dPLkSYdivHbtGgUHB1NUVBR9/fXXpNfrqbS0lJKTk2nw4MEkl8vN4rC3fud90NLSYrE8NTWVTp8+TQaDgY4dO0YKhYLGjh3bY7sXLlygyZMnU2hoqMV27RUVFUXe3t4PvR1n9JfowTFXKpUUFxdnqm/tmBMRKZVKevbZZwXbiY2NJY1GIyi3Vt8e9l4/3fGU/ZaYmEj9+vUjnU5na9d7lJeXR/beRnfs2EEA6JNPPrG6bN26dRbXLSwsJLVabXpdU1ND0dHRBIB27txpKtfpdIJ9VFlZSTExMRQeHk75+fnU2NhIV65cobS0NJLJZPTpp5+a1bfn+Np7/7WXJ/W7sbGRAFB8fLzFvnp7e9O4cePs3kfp6emUnp5u93oussdjko1XXnmFANCuXbvMyisrK0kul1NsbKxZufGEOnTokFn5yJEjCQB98803ZuUxMTE0YsQIQbtarZYACG5gpaWlBIC0Wq1DMWZkZBAA2rdvn1nd8vJyksvlgjdxe+t33gfW3kTy8/PNytPT0wkA1dTU9NjunTt3KCAgwK2SDVv6S/TvY37+/HmzckvHnMjzkw132W8JCQkUEhLy0G98nTk72di4cSMBoE2bNllct+ubLtGDN1hfX19SKpX0/fffm8q67qNXX32VANDu3bvNyltbWykyMpIUCgVVVVWZyu05vvbef+3laf2WyWQ0bNgwi8s8NdnwmMcoBw4cgJeXl2CKXkREBEaOHIlz585Z/BXMrnOxjc9Ju5ZHRUWhoqLCYtv+/v4YN26cWdmoUaMQGRmJkpISVFZW2h3j0aNHATx4Rtk1PkuDouytb4uxY8eavY6OjgYAs/1grd3Q0FA89thjDrUrFVv6a6RUKk0fhxpZOuZ9gbvst5MnT+Lu3buIi4sTrY2HZXxU5evra/M648ePR25uLpqbm5GRkYGWlhaL9fbv3w8AmDp1qlm5XC5HUlISWlpaLH60b8vxdfT++zDcud8+Pj5W4/VUHpFstLW1obGxER0dHVCr1YIvd/n2228BANeuXROsGxQUZPbay8sL3t7eCAgIMCv39va2Ov1Po9FAJpMJysPCwgAAd+7csSvGtrY26PV6+Pv7W/zCH+N2O/ffnvq2UqvVZq/9/PwAwLQfemo3JCTEoXal0lN/OwsODra4jc7HvK/g/eY8xi/fu3//vl3rZWdnIzMzExcuXLA4XdZ4//H397c4lTw8PBwAUFVVJVhmy33A0fvvw3LXfre3t/e5QfDuN4LKArlcjuDgYBgMBrS0tLh8YFhjY6PFcuONMywszO4YVSoV9Ho9DAaD4I387t27Zq/lcrld9Z2lp3Y9+Y2jrq4ORCRIMjsfcyMvLy/cu3dPsI2GhgaL27aUuHoK3m/dGzBgAADr95TubNu2DcXFxdi+fbvgG4PlcjnUajUaGxuh1+sFb7zGL86LiIiwu12p77/u1u+mpiYQkelY9xUe8ckGAKSlpaG9vd3iDJANGzZg4MCBaG9vF6Vtg8GAkpISs7LvvvsOFRUV0Gq1ppPKnhinTJkC4N+PKYxqa2tx5coVwfr21ncWa+1WVVXh6tWrorUrtdbWVtO3GhpZOubAgzeQ8vJys7pVVVW4deuWxW0HBASYvcmOGDECW7dudWL00uH91r3HH38cABx65BAYGIgvv/wSSqUSH3/8sWD5rFmzAEAw5bKtrQ3Hjx+HQqEQPA61lZT3X3frt/GcNh7rvsJjko3169dj6NCh+NWvfoUjR46gsbERd+/exZYtW/D73/8eubm5omXcSqUSixYtwv/93/+hubkZRUVFyMrKgp+fHz788EOHYly3bh369euHnJwcHDt2DAaDAZcuXUJWVpbFRxb21ncWS+1euHAB//Ef/+HQfwvuQq1W45133oFOp+v2mANAcnIyKioq8NFHH8FgMKCsrAxvvvmm1cdbTz31FK5evYoff/wROp0O169fR3x8vCu6JTop99ukSZOg0Whw5swZUfv4MLRaLcLCwgT/vNhq5MiR2LJli8Vl69evR0xMDHJycnDw4EHo9XpcvXoVL7/8MiorK/Hhhx+aHivYy977b1ZWFmQyGf71r3851F5X7tJvAKYpscnJyQ616bYkHqFqFRwYTV9XV0eLFy+mIUOGkK+vL4WGhlJycjIdO3bMVEen0xEAs7/f/va3VFhYKChfv349/fOf/xSUr1q1it577z3T66ioKDp79iwlJiZSYGAgKRQKSkhIoIKCAodiNLpy5QrNnDmTgoKCTNOuDh48SElJSaa2f/3rX9tdf//+/YI+zZ071+q+MR6Pzn9Tp0612G5AQAA988wz9M0339DEiRMpICDArmNolJ+fL2jT+Nd1qlpPnN1frVZLUVFRdOnSJUpJSSGVStXtMW9oaKD58+fTgAEDSKFQ0IQJE6iwsJBiY2NN23/77bdN9S9fvkzx8fGkVCopOjra6syE7jhy/XTlafstPj6+189GISJ65513yMfHh8rLy01lNTU1gn3b3QyP1157zeKMndraWsrJyaGYmBjy9fUltVpNKSkpdPz4cVMdR4+vPfe2SZMmUWBgILW3t3e7rzyt30QPZvBFRUXRvXv3LC731NkoHpVssN5lxIgRNHDgQKnDcDrjm2Zv1huvH3fYb/YSI9loaGigqKgoWrhwoTNC7HXq6+tJoVDQ/PnzpQ7F5YqLi0kmkwmm4XbmqcmGxzxGYdKoqqpCv379BKPnb9y4gbKyMkyaNEmiyBhzT2q1Gvn5+di3bx82bdokdThORUTIzs5GUFAQVq9eLXU4LnX9+nWkpaVh+fLlmDNnjtThuBwnG+yh1dfXY+HChfjxxx/x008/4ezZs8jMzERQUJDFn1NmjAGvvfYaZDKZxTFVo0ePRlFREY4cOYKmpiYJohNHdXU1rl+/juPHj3v0mC5LtmzZgrVr12Lt2rWCZcuWLTNNmf35558liE58nGywhxIREYF//OMfaGhowHPPPYeQkBDMmDEDjz76KM6ePYshQ4aY6nadh27p73e/+51d7YuxTWuMv8FRUlKC8vJyyGQyrFixwinb9mS838xlZWWBiEx/BoPBYr3Bgwfj4MGDgu8CcmcREREoKCjAyJEjpQ7F5TZs2GD1E40//OEPZudEbx7E7CiP+J4NJq2kpCQkJSX1WI+InN62GNu0ZunSpVi6dKnL2vMUvN8YY/zJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkQlI1cO57eDJ/yCI2OMMeYq6enp2Lt3r9RhWLK3V099zcnJQVxcnNRhMOZ2MjMz+fpxAZ1Ohw8++AB5eXlSh8L6uPfff1/qELrVq5ONuLg4zJ49W+owGHM7mZmZfP24yAcffMD7mUmul36iYcJjNhhjjDEmKk42GGOMMSYqTjYYY4wxJipONhhjjDEmKk42XCgwMFDwi6S5ublSh+UQT+oLY660c+dOs+vG0k/MA8DNmzcxY8YMNDU1oba21myd0aNHo7W1VbBO13oymQxjxowRu0ui8aR+L1u2zOqspc4/MS+TyTB+/HgXRyc+TjZcyGAw4Pz58wCA1NRUEJHb/hqmJ/WFMSl88sknVn9ivri4GGPGjEFycjKCgoLQv39/EBEKCwtNy3NycgTrGevpdDpoNBoQEYqKikTvi1g8qd8LFizA8uXLsXLlSsGyzj8x7+3tLUF04uNkg1kVGBiICRMmSB0G8wBSn0tSt2+PpqYmTJ8+HS+++CIWLVokWC6Xy6HRaLBlyxbs3r1bggil4e79Hjp0KPbv34+1a9diz549UofjcpxsMMZYL7Jx40ZUVVXh3Xfftbjc398fu3btgpeXFxYuXIirV6+6OEJpeEK/tVot0tPTsWTJErS3t0sdjktxssEYY70EEWHbtm0YN24cIiMjrdZLSUnBihUroNfrkZGRYXEcgyfyhH7PmjULt2/fxqFDh6QOxaU42egFDhw4YDY46MaNG8jMzERwcDA0Gg2mTZuGsrIyU/3c3FxT3UceeQSFhYVISkqCSqVCQEAAEhMTcerUKVP9NWvWmOp3/ij56NGjpvL+/fsLtt/c3IxTp06Z6vj4OP6Fs+3t7cjLy8MvfvELREREQKFQYNSoUfjwww/R0dEBAGhoaBAM8lqzZo1p/c7l6enppm3X1NQgOzsbgwcPhp+fH0JDQ5GWlobi4mKr+/jKlSuYPXs2NBqNqay2ttbh/nmCuro6LF68GEOHDoWfnx9CQkIwZcoUnDhxwlTH2eeSO57LYiopKUF1dTW0Wm2PdVetWoXk5GSUlpbijTfesGn7thxje+9HRrZch87g7v1+8sknAQBfffWVA713Y9RLAaC8vDypw3C68+fPEwBKTU0VLEtNTTUtO336NBkMBjp27BgpFAoaO3asoL5WqyWlUklxcXGm+oWFhfTEE0+Qn58fnTx50qy+UqmkZ599VrCd2NhY0mg0gnJr9W3pS1f5+fkEgNatW0d3796lmpoa+p//+R/y8vKipUuXmtVNSUkhLy8v+uGHHwTbiYuLo127dpleV1RU0KBBgyg8PJwOHTpEer2eLly4QAkJCeTv70+nT582W9+4jxMSEujEiRPU3NxMZ86cIW9vb6qpqemxH+7C3uunsrKSYmJiKDw8nPLz86mxsZGuXLlCaWlpJJPJ6NNPPzWr7+xzSepzOTExkfr160c6nc5qHUvy8vLI3tvojh07CAB98sknVpetW7fO4rqFhYWkVqtNr2tqaig6OpoA0M6dO03lOp1OsB/sPcb23I/svQ7t5Un9bmxsJAAUHx9vsa/e3t40btw4u/dReno6paen272ei+zhZMPFbEk28vPzzcrT09MJgODNUKvVEgA6f/68WXlpaSkBIK1Wa1YudbIxceJEQXlWVhb5+vpSY2Ojqeyrr74iAPT666+b1S0oKKCoqCi6d++eqeyVV14hAGYJCNGDG4xcLqfY2FizcuM+Pnz4cI8xuzN7r59XX32VANDu3bvNyltbWykyMpIUCgVVVVWZysVINqQ8lxMSEigkJMTuN0VnJxsbN24kALRp0yaL63Z90yV68Abr6+tLSqWSvv/+e1NZ1/1g7zG2535k73VoL0/rt0wmo2HDhllc5qnJBj9G6YXGjh1r9jo6OhoAUFFRIairVCpNH8sZjRo1CpGRkSgpKUFlZaV4gdph2rRpZh9ZGmm1Wty/fx8XL140lSUnJ2PUqFH47LPPUFdXZyp/77338MYbb8DX19dUduDAAXh5eWHatGlm242IiMDIkSNx7tw53L59W9Du008/7YxueYz9+/cDAKZOnWpWLpfLkZSUhJaWFtE/9pXyXD558iTu3r0r+a/kGscgdD7HezJ+/Hjk5uaiubkZGRkZaGlpsVjP0WNsy/3I0evwYbhzv318fKzG66k42eiF1Gq12Ws/Pz8AMI1t6Cw4ONjiNsLCwgAAd+7ccXJ0jmlsbMS7776LUaNGISQkxPRc9K233gIA/PTTT2b1c3Jy8NNPP+Hjjz8GAFy9ehX/+7//i//8z/801Wlra0NjYyM6OjqgVqsF4z2+/fZbAMC1a9cE8SiVSrG66naM+9Hf3x8qlUqwPDw8HABQVVUlahzuci6Lyd/fHwBw//59u9bLzs5GZmYmLly4YHG67MMc457uRw9zHT4sd+13e3s7FAqFnb11b5xsuLm6ujoQkaDceGM23qgBwMvLC/fu3RPUbWhosLhtmUzmpCiB6dOnY/Xq1ViwYAGuXr2Kjo4OEBHef/99ABD0Ye7cuQgPD8dHH32EtrY2/PGPf8Qrr7yCkJAQUx25XI7g4GD4+Pjg/v37pi/F6fqXmJjotH54IrlcDrVajdbWVuj1esHy6upqAA/+WzMS41xyl3NZTAMGDADwIDm317Zt2zBixAhs374dO3bsMFvmyDG2ldTXobv1u6mpCURkOtZ9BScbbq61tdX07XpG3333HSoqKqDVas1O6AEDBqC8vNysblVVFW7dumVx2wEBAWY39BEjRmDr1q12xefj44OLFy/i1KlTiIiIQHZ2NkJDQ003f2sfJcrlcrz++uu4c+cO/vjHP2LXrl148803BfXS0tLQ3t5uNmPBaMOGDRg4cGCfm8/uiFmzZgGAYDpeW1sbjh8/DoVCgZSUFFO5GOdSbz+XXeHxxx8HAIceOQQGBuLLL7+EUqk0fSLYmb3H2B5SXofu1m/jeWs81n0FJxtuTq1W45133oFOp0NzczOKioqQlZUFPz8/fPjhh2Z1k5OTUVFRgY8++ggGgwFlZWV48803zf5j7Oypp57C1atX8eOPP0Kn0+H69euIj4+3O0Zvb29MnDgRVVVVeO+991BbW4uWlhacOHECmzdvtrre66+/DoVCgRUrVmDy5MkYNmyYoM769esxdOhQ/OpXv8KRI0fQ2NiIu3fvYsuWLfj973+P3NzcXjvNsTdZv349YmJikJOTg4MHD0Kv1+Pq1at4+eWXUVlZiQ8//ND0kTMgzrkk5bk8adIkaDQanDlzxtFd6BRarRZhYWEoKSlxaP2RI0diy5YtFpfZe4ztYe91mJWVBZlMhn/9618OtdeVu/QbgGlKbHJyskNtui0Xjka1CzxwNopSqSQAZn/vvfce6XQ6Qflvf/tbIiJB+dSpU03b02q1FBUVRZcuXaKUlBRSqVSkUCgoISGBCgoKBO03NDTQ/PnzacCAAaRQKGjChAlUWFhIsbGxpu2//fbbpvqXL1+m+Ph4UiqVFB0dbTZC3lJfrP19//33VFNTQwsXLqTo6Gjy9fWl8PBwevXVV2nZsmWmepZGbi9YsIAA0DfffGN1v9bV1dHixYtpyJAh5OvrS6GhoZScnEzHjh0z1bG0j3vx6f/QHLl+amtrKScnh2JiYsjX15fUajWlpKTQ8ePHBXWdeS4RSXsuExHFx8f3itkoRETvvPMO+fj4UHl5uamspqZGcO52N8Pjtddeszgrx5Zj7Oj9yJbr0GjSpEkUGBhI7e3t3e4rT+s3EVFGRoZgVl1nnjobpdfebT0x2XA24w3ak23fvv2hp831Re52/bjruSxGstHQ0EBRUVG0cOFCZ4TY69TX15NCoaD58+dLHYrLFRcXk0wmE0zD7cxTkw1+jMJ6tc2bN2Px4sVSh8GYy6jVauTn52Pfvn3YtGmT1OE4FREhOzsbQUFBWL16tdThuNT169eRlpaG5cuXY86cOVKH43KcbLBeZdu2bZg1axYMBgM2b96M+vp6zJ49W+qwGHO61157DTKZDIGBgYJlo0ePRlFREY4cOYKmpiYJohNHdXU1rl+/juPHjzs0A8SdbdmyBWvXrsXatWsFy5YtW2aaMvvzzz9LEJ34ONlwQ8bfeygpKUF5eTlkMhlWrFghdVhOc+DAAYSEhOCTTz7BF198wQM8PZinn8uWZGVlmU2NNBgMFusNHjwYBw8eRFBQkIsjFE9ERAQKCgowcuRIqUNxuQ0bNlj9ROMPf/iD2Tkh9UBlMfBd3A0tXboUS5culToMUcyfPx/z58+XOgzmIp58LjPG/o0/2WCMMcaYqDjZYIwxxpioONlgjDHGmKg42WCMMcaYqHr1AFGdTid1CIy5Lb5+xGfcx3v27JE4EtbX3b59G4888ojUYVglI7LwM4u9gLv8SiNjjDHWG6Snp2Pv3r1Sh2HJ3l77yUYvzYEY69P27NmDzMxMvj4ZY3bhMRuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbjDHGGBOVj9QBMMZ6pzt37uAvf/mLWVlpaSkAYMOGDWbl/fr1w4IFC1wWG2PMvciIiKQOgjHW+7S3tyMiIgL19fXw9fW1Wq+trQ0LFy7E5s2bXRgdY8yN7OXHKIwxi3x8fPDSSy/B29sbbW1tVv8A4OWXX5Y4WsZYb8bJBmPMqpdeegn379/vtk5ERAQmTJjgoogYY+6Ikw3GmFVxcXF45JFHrC738/PDvHnz4OXFtxLGmHV8h2CMWSWTyZCVlWV1zMa9e/fw0ksvuTgqxpi74WSDMdat7h6lDBkyBKNHj3ZxRIwxd8PJBmOsW0888QRGjBghKPfz88Mrr7wiQUSMMXfDyQZjrEfz5s0TPEq5d+8e5syZI1FEjDF3wskGY6xHWVlZaG9vN72WyWTQarUYPny4hFExxtwFJxuMsR4NGjQITz31FGQyGQDA29ubH6EwxmzGyQZjzCa//OUv4e3tDQD4+eefMXv2bIkjYoy5C042GGM2mT17Njo6OiCTyfDss88iKipK6pAYY26Ckw3GmE0iIiKQkJAAIuJHKIwxu3j8D7Ht2bMHmZmZUofBGGOMWeThb8MAsLfP/MR8Xl6e1CEwD5KZmYmcnBzExcVJHYpLtbS0YOvWrXjzzTdd0p5Op8MHH3zA1y/zSMbzuy/oM8kGD2ZjzpSZmYm4uLg+eV794he/QGRkpMva++CDD/rkfmZ9Q19JNnjMBmPMLq5MNBhjnoGTDcYYY4yJipMNxhhjjImKkw3GGGOMiYqTjV4gNzcXMpkMMpkMjzzyiEva/OKLL0xt+vv7O71+b3T48GEMHz4cPj59Zlw0c5KbN29ixowZaGpqQm1trelakMlkGD16NFpbWwXrdK0nk8kwZswYCaJ3Dk/q97Jly3iGk4txstELLF26FEQErVbrsjbnzJkDIkJSUtJD1zcYDHj00Ucxbdo0Z4fpFGVlZZgxYwaWL1+O6upqqcMx09v3HQOKi4sxZswYJCcnIygoCP379wcRobCw0LQ8JydHsJ6xnk6ng0ajARGhqKjI1eE7jSf1e8GCBVi+fDlWrlwpdSh9Bicb7KERETo6OtDR0SF1KBatXLkSzzzzDM6dOweVSiV1OGZ6+77rLDAwEBMmTJA6DJdqamrC9OnT8eKLL2LRokWC5XK5HBqNBlu2bMHu3bsliFAa7t7voUOHYv/+/Vi7di327NkjdTh9Aicb7LR70dEAACAASURBVKGpVCqUlZXh8OHDUodi0Z///GcsW7asVz4+6e37rq/buHEjqqqq8O6771pc7u/vj127dsHLywsLFy7E1atXXRyhNDyh31qtFunp6ViyZAna29ulDsfjcbLBPJ5CoZA6BOaGiAjbtm3DuHHjuv1ukZSUFKxYsQJ6vR4ZGRkWxzF4Ik/o96xZs3D79m0cOnRI6lA8HicbVtTU1CA7OxuDBw+Gn58fQkNDkZaWhuLiYlOdAwcOmA2CunnzJjIzM6FSqaDRaDBv3jzU19fjxo0bmD59OlQqFQYMGIAFCxZAr9dbbfvy5cuYOnUq1Go1AgICkJiYiFOnTjkUY+dtzpw5E2q1GkqlEvHx8SgoKOg2Blvqd90HxhtO1/IbN24gMzMTwcHB0Gg0mDZtGsrKyrptNyAgAE8//TQOHjyIyZMnm7Y1f/58q3G7E2ftu64DjAsLC5GUlASVSmXx/FmzZo2pfufHIkePHjWV9+/fX7D95uZmnDp1ylSnN35S5EwlJSWorq62aSzVqlWrkJycjNLSUrzxxhs2bb+urg6LFy/G0KFD4efnh5CQEEyZMgUnTpww1XH0OrLn3vAw3L3fTz75JADgq6++cqD3zC7k4fLy8sjeblZUVNCgQYMoPDycDh06RHq9ni5cuEAJCQnk7+9Pp0+fNqufmppKACgtLY2KiorIYDDQ559/TgBoypQplJqaSufPnye9Xk+bN28mAPSb3/xG0K5WqyW1Wk2JiYlUUFBAer2eCgsL6YknniA/Pz86efKkQzFeu3aNgoODKSoqir7++mvS6/VUWlpKycnJNHjwYJLL5WZx2Fu/8z5oaWmxWJ6amkqnT58mg8FAx44dI4VCQWPHju2x3QsXLtDkyZMpNDTUYrv2ioqKIm9v74feDgDKy8t76O0QOWffET04f5RKJcXFxZnqWzt/iIiUSiU9++yzgu3ExsaSRqMRlFurb5SYmEj9+vUjnU5na9d75Mj16yw7duwgALRu3TqLywsLC0mtVpte19TUUHR0NAGgnTt3msp1Op1gf1ZWVlJMTAyFh4dTfn4+NTY20pUrVygtLY1kMhl9+umnZvXtORfsvX/Zy5P63djYSAAoPj7+ofaJo6Q8v11sj8f30pGD+corrxAA2rVrl1l5ZWUlyeVyio2NNSs3XhCHDh0yKx85ciQBoG+++casPCYmhkaMGCFoV6vVEgDBzbq0tJQAkFardSjGjIwMAkD79u0zq1teXk5yuVzwJm5v/c77wNobZn5+vll5eno6AaCampoe271z5w4FBAT02WTDln1H9O/z5/z582blls4fIucnGwkJCRQSEvLQb2adSXkz3rhxIwGgTZs2WVze9U2X6MEbrK+vLymVSvr+++9NZV3356uvvkoAaPfu3Wblra2tFBkZSQqFgqqqqkzl9pwL9t6/7OVp/ZbJZDRs2DAbe+9cfSnZ4McoFhw4cABeXl6C6YgREREYOXIkzp07h9u3bwvW6zqX3Pict2t5VFQUKioqLLbt7++PcePGmZWNGjUKkZGRKCkpQWVlpd0xHj16FMCDZ6xd4xs+fLggBnvr22Ls2LFmr6OjowHAbD9Yazc0NBSPPfaYQ+16Alv2nZFSqTR9NGxk6fwRw8mTJ3H37l2P+SVc42MtX19fm9cZP348cnNz0dzcjIyMDLS0tFist3//fgDA1KlTzcrlcjmSkpLQ0tJi8aN9W84FR+9fD8Od++3j42M1XuY8nGx00dbWhsbGRnR0dECtVgu+nObbb78FAFy7dk2wblBQkNlrLy8veHt7IyAgwKzc29vb6lRHjUYDmUwmKA8LCwMA3Llzx64Y29raoNfr4e/vj8DAQKvb7dx/e+rbSq1Wm7328/MDANN+6KndkJAQh9r1BD3tu86Cg4MtbqPz+cNsY/zyuvv379u1XnZ2NjIzM3HhwgWL02WN16+/v7/Fqdjh4eEAgKqqKsEyW64jR+9fD8td+93e3s6DyF3As0d4OUAulyM4OBgGgwEtLS0uHwTX2Nhosdz4JhEWFmZ3jCqVCnq9HgaDQfBGfvfuXbPXcrncrvrO0lO7/CZpm7q6OhCRIGHtfP4YeXl54d69e4JtNDQ0WNy2pSTYkw0YMACA9WuyO9u2bUNxcTG2b98u+MZduVwOtVqNxsZG6PV6wRuv8YvnIiIi7G5X6vuXu/W7qakJRGQ61kw8/MmGBWlpaWhvb7c4A2TDhg0YOHCgaPOyDQYDSkpKzMq+++47VFRUQKvVmi4Ke2KcMmUKgH8/pjCqra3FlStXBOvbW99ZrLVbVVXllvP4pdDa2mr6hkcjS+cP8ODNtLy83KxuVVUVbt26ZXHbAQEBZsnJiBEjsHXrVidG37s8/vjjAODQI4fAwEB8+eWXUCqV+PjjjwXLZ82aBQCCKZdtbW04fvw4FAqF4HGiraS8f7lbv43nv/FYMxFJPWpEbI4MwKmurqahQ4fSkCFD6PDhw9TQ0EB1dXW0efNmCggIEAwMtDbALyUlxeJgxISEBFIqlYJy42yCCRMm0JkzZ7qdTWBPjD/88AP169fPbJbHxYsXKSUlhcLCwgQDL+2t390+sFb+9ttvCwYzWmr3u+++o+eff54GDRrUZweI2rLviP49mykpKcmm2SiLFi0iAPSnP/2J9Ho9/fDDDzR79myKioqyOED0+eefJ7VaTbdu3aLTp0+Tj48PXbp0ybTc02ajdHR0UFhYmNVBsZYGSna1c+dOAtDjrIympiazWRlbt241q2/PuWDv/Wvu3LkEgK5fv97jPvGkfhMR/e1vfyMAtH//fpv67mx9aYCox/fS0YNZV1dHixcvpiFDhpCvry+FhoZScnIyHTt2zFRHp9MRALO/3/72t1RYWCgoX79+Pf3zn/8UlK9atYree+890+uoqCg6e/YsJSYmUmBgICkUCkpISKCCggKHYjS6cuUKzZw5k4KCgkzTxg4ePEhJSUmmtn/961/bXX///v2CPs2dO9fqviEiQfnUqVMtthsQEEDPPPMMffPNNzRx4kQKCAiw+zgSEeXn5wvaNP51nWpnK2ckG87ed1qtlqKioujSpUuUkpJCKpWq2/OnoaGB5s+fTwMGDCCFQkETJkygwsJCio2NNW3/7bffNtW/fPkyxcfHk1KppOjoaMEsjfj4eI+ajUJE9M4775CPjw+Vl5ebympqagTHobsZHq+99prF5K22tpZycnIoJiaGfH19Sa1WU0pKCh0/ftxUx9FzwZ57w6RJkygwMJDa29u73Ree1m+iBzPgoqKi6N69e932XSxSn98uxMkGcw8jRoyggQMHSh2GiTM/2XAWY7LhSaS+fhsaGigqKooWLlwoWQxiqq+vJ4VCQfPnz5c6FJcrLi4mmUwmmIbrSlKf3y7EU19Z71FVVYV+/foJRv/fuHEDZWVlmDRpkkSRsb5KrVYjPz8f+/btw6ZNm6QOx6mICNnZ2QgKCsLq1aulDselrl+/jrS0NCxfvhxz5syROpw+gZMN1qvU19dj4cKF+PHHH/HTTz/h7NmzyMzMRFBQEP8cNJPE6NGjUVRUhCNHjqCpqUnqcJymuroa169fx/Hjxx2aAeLOtmzZgrVr12Lt2rVSh9JncLLBeo2IiAj84x//QENDA5577jmEhIRgxowZePTRR3H27FkMGTLEVLfrPHpLf7/73e+k64wLGX+7pKSkBOXl5ZDJZFixYoXUYXmUwYMH4+DBg4Lv0nFnERERKCgowMiRI6UOxeU2bNjAn2i4GH/PButVkpKSkJSU1GM9InJBNO5h6dKlWLp0qdRhMMaYVfzJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZE1WcGiO7Zs0fqEJiH0el0Uofg8Yz7mK9f5on60j1ERh4+rH/Pnj3IzMyUOgzGGGPMIg9/GwaAvX3mk40+cDCZC8lkMuTl5WH27NlSh+LRjP8s8PXLPFFf+meYx2wwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsOCgwMNCmXx6VyWQoKipyatvGX/mUyWR45JFHnLpta7744gtTm/7+/k6vz5gYbt68iRkzZqCpqQm1tbVm1+Xo0aPR2toqWKdrPZlMhjFjxkgQvXP01X53dv/+fbz//vuIjY2FSqVCWFgYpkyZgvz8/B5nOs2YMQMymQxr1qwRLFu2bBny8vLECtujcLLhIIPBgPPnzwMAUlNTQUQW/9RqtdPbXrp0KYgIWq3W6du2Zs6cOSAim36Rtaf6BoMBjz76KKZNm+bsMBkzKS4uxpgxY5CcnIygoCD0798fRITCwkLT8pycHMF6xno6nQ4ajQZE5PR/GFypr/bbqLm5GZMmTcJnn32G999/H3fu3EFRURECAwMxY8YMXLx40eq6n3/+OfLz860uX7BgAZYvX46VK1eKEbpH4WSDuRwRoaOjAx0dHVKH4jECAwMxYcKEPtt+V01NTZg+fTpefPFFLFq0SLBcLpdDo9Fgy5Yt2L17twQRSqMv9vutt95CaWkpvv76azz33HNQKBQYOHAgPvvsM8jlcqvrVVRUICcnB/PmzbNaZ+jQodi/fz/Wrl3L33LbA042RNbQ0OAxH0U6i0qlQllZGQ4fPix1KMxDbdy4EVVVVXj33XctLvf398euXbvg5eWFhQsX4urVqy6OUBp9rd/V1dXYunUr5s6di/DwcLNlSqUSra2tePzxxy2uu2DBAmRkZCA5ObnbNrRaLdLT07FkyRK0t7c7LXZPw8mGSCZMmIDPPvtM6jAY63OICNu2bcO4ceMQGRlptV5KSgpWrFgBvV6PjIwMi+MYPFFf6vff//53/Pzzz3Z/6rZ9+3ZcvHgRubm5NtWfNWsWbt++jUOHDjkSZp/AyYYLHThwwGzw1c2bN5GZmQmVSgWNRoN58+ahvr4eN27cwPTp06FSqTBgwAAsWLAAer3e6nYvX76MqVOnQq1WIyAgAImJiTh16pSgXk1NDbKzszF48GD4+fkhNDQUaWlpKC4utrjNmTNnQq1WQ6lUIj4+HgUFBd3GYEv9rvvAeKPrWn7jxg1kZmYiODgYGo0G06ZNQ1lZWbftBgQE4Omnn8bBgwcxefJk07bmz59vNW5Xqqurw+LFizF06FD4+fkhJCQEU6ZMwYkTJ0x11qxZY4q78w3y6NGjpvL+/fubyo2DhZubm3Hq1ClTHR8fH7PlxsHEhYWFSEpKgkqlsniuOLt9KZSUlKC6utqmMU2rVq1CcnIySktL8cYbb9i0fVuOo6Pnsz3X6MPoK/3+9ttvAQAhISFYsmQJoqOj4efnh0GDBiE7Oxt3794VrHP79m0sWbIE27dvh0qlsqmdJ598EgDw1VdfPVS8Ho08XF5eHonVzfPnzxMAq39/+ctfLK6XmppKACgtLY2KiorIYDDQ559/TgBoypQplJqaSufPnye9Xk+bN28mAPSb3/xGsB2tVktqtZoSExOpoKCA9Ho9FRYW0hNPPEF+fn508uRJU92KigoaNGgQhYeH06FDh0iv19OFCxcoISGB/P396fTp06a6165do+DgYIqKiqKvv/6a9Ho9lZaWUnJyMg0ePJjkcrlZHPbW77wPWlpaLJanpqbS6dOnyWAw0LFjx0ihUNDYsWN7bPfChQs0efJkCg0NtdiuswCgvLw8m+tXVlZSTEwMhYeHU35+PjU2NtKVK1coLS2NZDIZffrpp2b1lUolPfvss4LtxMbGkkajEZRbq2+k1WpJqVRSXFycab9aO1fEaD8xMZH69etHOp3Oah1LHLl+d+zYQQBo3bp1FpcXFhaSWq02va6pqaHo6GgCQDt37jSV63Q6QV/tPY72nM/2XKOO6Iv9NsYRERFBc+fOpbKyMqqvr6e//vWvpFQqafjw4dTQ0GC2TkpKCr3++uum18bzafXq1VbbaWxsJAAUHx9vV3xivj/1Mns8vpeuSDZSU1MFy5599tkek41Dhw6ZlY8cOZIA0DfffGNWHhMTQyNGjBBsR6vVEgDBDby0tJQAkFarNZW98sorBIB27dplVreyspLkcjnFxsaayjIyMggA7du3z6xueXk5yeVywZu4vfU77wNryUZ+fr5ZeXp6OgGgmpqaHtu9c+cOBQQE9Kpk49VXXyUAtHv3brPy1tZWioyMJIVCQVVVVaZyMZINAHT+/HmzckvnihjtJyQkUEhIiN1vHI5cvxs3biQAtGnTJovLu77pEj14g/X19SWlUknff/+9qaxrX+09jvacz/Zco47oi/1OSUkhABQTE0P37983W7ZmzRoCQCtXrjSVbd26lYYMGUIGg8FUZkuyQUQkk8lo2LBhdsXXl5INfowioa4DR43Pl7uWR0VFoaKiwuI2/P39MW7cOLOyUaNGITIyEiUlJaisrATw4ONNLy8vwXTTiIgIjBw5EufOncPt27cBPPjIHHjwbLdrfMOHDxfEYG99W4wdO9bsdXR0NACY7Qdr7YaGhuKxxx5zqF2x7N+/HwAwdepUs3K5XI6kpCS0tLSI/hGsUqk0fdxrZOlcEcPJkydx9+5dxMXFidaGkfHRnK+vr83rjB8/Hrm5uWhubkZGRgZaWlos1nP0ONpyPttzjTqLp/dbqVQCACZPnix4tDd9+nQA/370cevWLbz11lvYvn27aT17+Pj4WN1/jMdsiKagoACvvvpqt3WCgoLMXnt5ecHb2xsBAQFm5d7e3laniWo0GshkMkF5WFgYAODOnTtoa2tDY2MjOjo6oFarBV/cY3yuee3aNbS1tUGv18Pf3x+BgYFWt2tkb31bdf1+Ej8/PwAw7Yee2g0JCXGoXTEY97+/v7/FZ8DGUfJVVVWixhEcHGyxvPO54gmMXyJ3//59u9bLzs5GZmYmLly4YHG67MMcR1vOZ1uvUWfz5H4PHjwYwIP7ZFfG876mpgYAkJ+fj8bGRkycONEsBuPU15UrV5rKfvjhB8H22tvboVAoHIqzL+Bkw801NjZaLDe+cYSFhUEulyM4OBg+Pj64f/++1S8gS0xMhFwuh0qlQmtrKwwGg2C7XQdU2VvfWXpqtze9ccrlcqjVarS2tloc6FtdXQ3gwX9yRl5eXrh3756gbkNDg8U2LCWcXdXV1Vn8tsTO54qY7bvKgAEDAFi/Nrqzbds2jBgxAtu3b8eOHTvMljlyHG1lzzUqBk/tt3GQs6VP7YznvTFZ+q//+i+LbRv3x+rVq01lw4YNM9tWU1MTiMh07jEhTjZENmbMGHzxxReibd9gMKCkpMSs7LvvvkNFRQW0Wq3p5E9LS0N7e7vFWSobNmzAwIEDTXPEp0yZAuDfjymMamtrceXKFcH69tZ3FmvtVlVV9brvD5g1axYACKbGtbW14fjx41AoFGaPgwYMGIDy8nKzulVVVbh165bF7QcEBJglByNGjMDWrVvN6rS2tpq+RdLI0rkiVvuuYvzeBEc+eg8MDMSXX34JpVKJjz/+WLDc3uNoD3uuUWfz1H6/8MILiIqKwtGjRwVTfI3fDDpz5kyHtt2Z8Vqx9p0dDJ4/MkWqAaJGsbGxgkFV1gZHpqSkkLe3t2AbCQkJpFQqBeXGGQYTJkygM2fOdDvDoLq6moYOHUpDhgyhw4cPU0NDA9XV1dHmzZspICDAbLDjDz/8QP369TOb5XHx4kVKSUmhsLAwwcBLe+t3tw+slb/99tuCAY6W2v3uu+/o+eefp0GDBvWqAaJdR/M3NTWZjebfunWrWf1FixYRAPrTn/5Eer2efvjhB5o9ezZFRUVZHKD5/PPPk1qtplu3btHp06fJx8eHLl26ZFpunLmUlJRk02wUZ7fvytkoHR0dFBYWZnXAqqWBkl3t3LmTAPQ4K6On42jP+WzPNUpENHfuXAJA169f73Gf9OV+HzlyhHx8fCg1NZWuXr1K9fX19Pnnn5NSqaRx48bRTz/91O36tgwQ/dvf/kYAaP/+/TbFZNSXBoh6fC/FOphKpbLbaa+d/4zJhk6nEyz77W9/S4WFhYLy9evX0z//+U9B+apVq+i9994zvY6KiqKzZ89SYmIiBQYGkkKhoISEBCooKBDEXFdXR4sXL6YhQ4aQr68vhYaGUnJyMh07dkxQ98qVKzRz5kwKCgoyTVc7ePAgJSUlmdr+9a9/bXf9/fv3C/o0d+5cq/uGiATlU6dOtdhuQEAAPfPMM/TNN9/QxIkTKSAgwNmH3cTeZIOIqLa2lnJycigmJoZ8fX1JrVZTSkoKHT9+XFC3oaGB5s+fTwMGDCCFQkETJkygwsJCio2NNe2Ht99+21T/8uXLFB8fT0qlkqKjowUzMbRaLUVFRdGlS5coJSWFVCpVt+eKs9uPj4932WwUIqJ33nmHfHx8qLy83FRWU1MjOJe6m+nw2muvWUysbDmOjp7P9lyjkyZNosDAQGpvb+92X/TVfnd2+vRpSklJIbVaTX5+fvTYY4/R7373u24TjYULF1q8n6ekpAjqZmRkUFRUFN27d8/mmIg42fAofehgsk5GjBhBAwcOFG37jiQbUjImG+7G0eu3oaGBoqKiaOHChSJEJb36+npSKBQ0f/58qUNxqd7Y7+LiYpLJZIJPsG3Rh96feOorc19VVVXo16+fYNbBjRs3UFZWhkmTJkkUGZOaWq1Gfn4+9u3bh02bNkkdjlMREbKzsxEUFITVq1dLHY7L9MZ+X79+HWlpaVi+fDnmzJkjdTi9GicbzK3V19dj4cKF+PHHH/HTTz/h7NmzyMzMRFBQEP/scx83evRoFBUV4ciRI2hqapI6HKeprq7G9evXcfz4cYdmgLir3tjvLVu2YO3atVi7dq3UofR6nGwwtxUREYF//OMfaGhowHPPPYeQkBDMmDEDjz76KM6ePYshQ4ZIHaLkjL9dUlJSgvLycshkMqxYsULqsFxm8ODBOHjwoOA7bdxZREQECgoKMHLkSKlDcane2O8NGzbwJxo2ku7XkhhzgqSkJCQlJUkdRq+1dOlSLF26VOowGGN9HH+ywRhjjDFRcbLBGGOMMVFxssEYY4wxUXGywRhjjDFR9ZkBohkZGVKHwDzM+++/j71790odhkcz/r4JX7/MEzny+z3uSkZk4WcgPYhOp8N///d/Sx0GYx6huroaFy5c4BlAjDlRH/inZa/HJxuMMefZs2cPMjMzLf5UPWOMWbGXx2wwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUnGwwxhhjTFScbDDGGGNMVJxsMMYYY0xUPlIHwBjrnSoqKjBt2jTcv3/fVPbTTz9BrVZj1KhRZnVHjx6Nzz//3NUhMsbcBCcbjDGLIiMjce/ePVy8eFGwrLGx0ez1nDlzXBUWY8wN8WMUxphVv/zlL+Hj0/3/JDKZDC+//LKLImKMuSNONhhjVr300kv4+eefrS6XyWSIjY1FTEyMC6NijLkbTjYYY1ZFR0dj/Pjx8PKyfKvw9vbGL3/5SxdHxRhzN5xsMMa6NW/ePMhkMovLOjo6MHv2bBdHxBhzN5xsMMa6lZGRYbHc29sbEydORHh4uIsjYoy5G042GGPd6t+/P5KSkuDt7S1YNm/ePAkiYoy5G042GGM9ysrKAhGZlXl5eWHWrFkSRcQYcyecbDDGejRz5kz4+vqaXvv4+GDq1KlQq9USRsUYcxecbDDGeqRSqTB9+nRTwvHzzz8jKytL4qgYY+6Ckw3GmE3mzp2L9vZ2AIBCocALL7wgcUSMMXfByQZjzCZTpkyBUqkEAKSnp0OhUEgcEWPMXfBvo/Rgz549UofAWK8xduxYnDhxAtHR0XxtMPb/RUdHIy4uTuowejUZdR1izsxY+zIjxhhjDHjwSd/evXulDqM328ufbNggLy+PvyXRw+zZsweZmZmC6Zysex0dHdiwYQOWL19u8zrGLwXjmzHzRNa+9I6Z4zEbjDGbeXl54a233pI6DMaYm+FkgzFml55+cp4xxrriZIMxxhhjouJkgzHGGGOi4mSDMcYYY6LiZMMFvvjiC8hkMshkMvj7+0sdjts6fPgwhg8fzmMG+pibN29ixowZaGpqQm1trelakslkGD16NFpbWwXrdK0nk8kwZswYCaJ3jr7a787u37+P999/H7GxsVCpVAgLC8OUKVOQn5/f46yyGTNmQCaTYc2aNYJly5YtQ15enlhhs/+Pkw0XmDNnDogISUlJUofilsrKyjBjxgwsX74c1dXVUocjYDAY8Oijj2LatGlSh+JxiouLMWbMGCQnJyMoKAj9+/cHEaGwsNC0PCcnR7CesZ5Op4NGowERoaioyNXhO01f7bdRc3MzJk2ahM8++wzvv/8+7ty5g6KiIgQGBmLGjBm4ePGi1XU///xz5OfnW12+YMECLF++HCtXrhQjdPb/cbLBRBUYGIgJEyY81DZWrlyJZ555BufOnYNKpXJSZM5DROjo6EBHR4fUofTIGcfDVZqamjB9+nS8+OKLWLRokWC5XC6HRqPBli1bsHv3bgkilEZf7Pdbb72F0tJSfP3113juueegUCgwcOBAfPbZZ5DL5VbXq6ioQE5ODubNm2e1ztChQ7F//36sXbuWvxVXRJxssF7vz3/+M5YtW9ZrH5+oVCqUlZXh8OHDUofiUTZu3Iiqqiq8++67Fpf7+/tj165d8PLywsKFC3H16lUXRyiNvtbv6upqbN26FXPnzkV4eLjZMqVSidbW00pjqAAAIABJREFUVjz++OMW112wYAEyMjKQnJzcbRtarRbp6elYsmSJ6ccGmXNxssF6Pf7Br76HiLBt2zaMGzcOkZGRVuulpKRgxYoV0Ov1yMjIsDiOwRP1pX7//e9/x88//2z3J3Lbt2/HxYsXkZuba1P9WbNm4fbt2zh06JAjYbIecLIhgsuXL2PmzJlQq9VQKpWIj49HQUGBoN6BAwfMBnJduXIFs2fPhkajMZXV1tYCAOrq6rB48WIMHToUfn5+CAkJwZQpU3DixAnT9nJzc03rPfLIIygsLERSUhJUKhUCAgKQmJiIU6dOCeKwZdtr1qwxbbvzRX/06FFTef/+/QWxNDc349SpU6Y6vfXTCUd1PYbGm37X8hs3biAzMxPBwcHQaDSYNm0aysrKTNux99h5+vEoKSlBdXU1tFptj3VXrVqF5ORklJaW4o033rBp+7ac8/YeQ6OamhpkZ2dj8ODB8PPzQ2hoKNLS0lBcXGz7DrBBX+n3t99+CwAICQnBkiVLEB0dDT8/PwwaNAjZ2dm4e/euYJ3bt29jyZIl2L59u82PXp988kkAwFdfffVQ8TIriHULAOXl5dlc/9q1axQcHExRUVH09ddfk16vp9LSUkpOTqbBgweTXC4XrJOamkoAKCEhgU6cOEHNzc105swZ8vb2ppqaGqqsrKSYmBgKDw+n/Px8amxspCtXrlBaWhrJZDL69NNPzban1WpJqVRSXFwcnT59mgwGAxUWFtITTzxBfn5+dPLkSVNde7etVCrp2WefFfQhNjaWNBqNoNxafUdFRUWRt7f3Q28nLy+PnHn6G49hS0uLxfLU1FTTsTh27BgpFAoaO3asYDv2HDsi5x+PxMRE6tevH+l0Olu73qP09HRKT0+3a50dO3YQAFq3bp3F5YWFhaRWq02va2pqKDo6mgDQzp07TeU6nU6wH+w95+05hhUVFTRo0CAKDw+nQ4cOkV6vpwsXLlBCQgL5+/vT6dOn7doP3O9/xxEREUFz586lsrIyqq+vp7/+9a+kVCpp+PDh1NDQYLZOSkoKvf7666bXxvNp9erVVttpbGwkABQfH29XfI6c333QHk42emBvspGRkUEAaN++fWbl5eXlJJfLu002Dh8+bHGbr776KgGg3bt3m5W3trZSZGQkKRQKqqqqMpVrtVoCQOfPnzerX1paSgBIq9U6vG1ONizrKdnIz883K09PTycAVFNTY1Zuz7Ejcv7xSEhIoJCQkId+U+zMkZvxxo0bCQBt2rTJ4vKub7pED95gfX19SalU0vfff28q67of7D3n7TmGr7zyCgGgXbt2mdWtrKwkuVxOsbGxNu4By/piv1NSUggAxcTE0P37982WrVmzhgDQypUrTWVbt26lIUOGkMFgMJXZkmwQEclkMho2bJhd8XGyYZM9/BjFyY4ePQrgwTPVziIjIzF8+PBu13366actlu/fvx8AMHXqVLNyuVyOpKQktLS0CD76UyqVpo8FjUaNGoXIyEiUlJSgsrLS4W0z+40dO9bsdXR0NIAHo+W7svXYieHkyZO4e/cu4uLiRGvDFsbHUb6+vjavM378eOTm5qK5uRkZGRloaWmxWM/Rc96WY3jgwAF4eXkJpkFHRERg5MiROHfuHG7fvm1zn2zh6f1WKpUAgMmTJwse+02fPh3Avx993Lp1C2+99Ra2b99uWs8ePj4+VvcfezicbDhRW1sb9Ho9/P39ERgYKFgeFhbW7fqWLo62tjY0NjbC39/f4rNH4+jsqqoqs/Lg4GCLbRhjuHPnjsPbZvZTq9Vmr/38/ADA4nRZW46dpzN++d39+/ftWi87OxuZmZm4cOGCxemyD3PO93QMjdvu6OiAWq0WfLmWcezBtWvX7OqTLTy534MHDwYAaDQawTLjNVFTUwMAyM/PR2NjIyZOnGgWg3Hq68qVK01lP/zwg2B77e3tPCBdJJxsOJFcLodKpUJraysMBoNguaWBTLZsU61Wo7W1FXq9XrDc+CVXERERZuV1dXUWv1XP+EYVFhbm0La9vLxw7949Qd2GhgaL8ctkMmtdY1bYcuyMPPV4DBgwAADQ2Nho97rbtm3DiBEjsH37duzYscNsmaPXky3kcjmCg4Ph4+OD+/fvg4gs/iUmJtq9bVt4ar+NA6AtfaJnvCaMydJ//dd/WWzbuD9Wr15tKhs2bJjZtpqamkBEpnOPORcnG042ZcoUAP9+nGJUW1uLK1euOLTNWbNmAYBgSlZbWxuOHz8OhUIheGzT2tpq+rZBo++++w4VFRXQarWmC8rebQ8YMADl5eVmdauqqnDr1i2LsQcEBJi9GY4YMQJbt27tsc99ma3HDvDc42H83gRHPnoPDAzEl19+CaVSiY8//liw3JHryVZpaWlob2+3OOtrw4YNGDhwoGjf4+Cp/X7hhRcQFRWFo0ePCqb4Gr8ZdObMmQ5tuzPjdWTtOzvYw+Fkw8nWrVuHfv36IScnB8eOHYPBYMClS5eQlZVl8dGKLdavX4+YmBjk5OTg4MGD0Ov1uHr1Kl5++WVUVlbiww8/FHzZjVqtxjvvvAOdTofm5mYUFRUhKysLfn5++PDDDx3ednJyMioqKvDRRx/BYDCgrKwMb775ptVHRE899RSuXr2KH3/8ETqdDtevX0d8fLxD+6GvsPXYAc4/HpMmTYJGo8GZM2dE7WNPtFotwsLCUFJS4tD6I0eOxJYtWywuc+R6stX69esxdOhQ/OpXv8KRI0fQ2NiIu3fvYsuWLfj973+P3Nxcs3EHWVlZkMlk+Ne//uVQe115Yr/lcjm2bduGuro6zJkzB9euXUNDQwN27NiB9evXY9z/Y+/eo5q60v6BfwOEEAIERLmKgjrqWlYjg46lhVKkQ7QqKAXRolOn1WHVWkq9VG2ldQ3aVocu27djX0WH19aqBe3oa7y11qmdF8ERrYKXqlWmOoAgoNwEFOT5/eEvKSEJJDGHBHg+a/EH++yzz7PPJTycs/fJhAlISUkxK+721FN0u3oBGDNTdw5H7Ylg4mwUIqIrV67Q9OnTyc3NTTNN7MCBAxQVFUUACAC98sorlJ+fr/m9/Y8+VVVVlJqaSkFBQSQWi0kul5NSqaRjx47p1FUoFOTv70+XLl0ipVJJrq6uJJVKKSIignJzcx+r7ZqaGpo/fz75+vqSVCqlsLAwKigooJCQEE38y5cv19S/fPkyhYeHk0wmo4CAAIOzCzqjUqn07icAOtP1jGWp2Sh79+7ViSkpKUnvsX3nnXeIiHTKp0yZomnP1GNn6eMRHh5uE7NRiIjefvttcnBwoNLSUk1ZZWWlzv7rbKbDq6++qndWjjHnvLnHsLq6mhYvXkxDhgwhsVhMAwYMoOjoaDp69KhOHBMnTiQXFxdqbW3tdF/01X63l5eXR0qlkuRyOTk6OtLIkSNp9erV1NjYaHCd5ORkvZ8bSqVSp25CQgL5+/vTgwcPjI6JiGejGClHRNTF1+X1cSKRCNnZ2Zg5c6a1QzHa2LFjUVVVZfFR771JTk4OEhMTu/y2yO7WG49dQkICAGD37t0mrVdbW4tRo0Zh6tSp2LRpkxChWVVNTQ38/PyQlJSELVu2WDucbmOL/S4sLERwcDB27tyJWbNmmbSuued3H7ObH6MwxmySXC6HSqXCnj17sHHjRmuHY1FEhJSUFLi5uSE9Pd3a4XQbW+x3cXEx4uLisHLlSpMTDWY8TjYYYzYrODgYp0+fxuHDh1FXV2ftcCymoqICxcXFOHbsmFkzQHoqW+z35s2bsXbtWqxdu9baofRqnGz0IurvvygsLERpaSlEIhFWrVpl7bD06jgXX9/P6tWrrR1mt+lJx667BQYG4sCBA3Bzc7N2KBbj4+OD3NxcjBo1ytqhdCtb7Pe6dev4jkY3sM1vYWJmWbp0KZYuXWrtMIxia2MlrK0nHTvGGDMV39lgjDHGmKA42WCMMcaYoDjZYIwxxpigONlgjDHGmKB4gKgRNmzYwC9s6WXUL81Sv5CHCUf96nPe16w3OnnyJJ588klrh2Hz+M4GY4wxxgTFdzaM8Oabb/ao15WzrqlfV853rITHr3NmvRnfsTMO39lgjDHGmKA42WCMMcaYoDjZYIwxxpigONlgjDHGmKA42bASFxcXnS8es7Ozg4eHBxQKBRYuXIgzZ85YO0zGrO7GjRuIiYlBXV0dqqqqtK6Z4OBgNDc366zTsZ5IJMK4ceOsEL1l9NV+t9fS0oINGzYgJCQErq6u8PLywuTJk6FSqbr8rqWYmBiIRCKsWbNGZ9mKFSuQnZ0tVNjs/+Nkw0oaGhpw9uxZAEBsbCyICC0tLbh8+TL+/Oc/4/Llyxg3bhz++Mc/orGx0crRMmYd586dw7hx4xAdHQ03Nzf0798fRISCggLN8tTUVJ311PXy8/Ph6ekJIsLp06e7O3yL6av9Vrt37x4mTpyIbdu2YcOGDbh9+zZOnz4NFxcXxMTE4OLFiwbX/eKLL6BSqQwuX7BgAVauXIm0tDQhQmf/HycbNsTe3h7e3t6IjY3FP/7xD7z11lvYtm0bZs+e3ae+JdXFxQVhYWHWDqPbWbvf1t5+R3V1dZg2bRpeeOEFLFq0SGe5RCKBp6cnNm/ejF27dlkhQuvoi/1etmwZioqK8O233+KZZ56BVCrFoEGDsG3bNkgkEoPrlZWVITU1FXPnzjVYZ+jQodi7dy/Wrl2LnJwcIcJn4GTDpn344YeYMGEC9u/fj6+++sra4TDWrdavX4/y8nK8++67epc7OTlhx44dsLOzQ3JyMq5evdrNEVpHX+t3RUUFMjMzkZSUBG9vb61lMpkMzc3NeOKJJ/Suu2DBAiQkJCA6OrrTbSgUCsTHx2PJkiVobW21WOzsV5xs2DCRSKT5j+6zzz6zcjSMdR8iwtatWzFhwgT4+fkZrKdUKrFq1SrU19cjISFB7ziG3qgv9Xv//v14+PChyXfdsrKycPHiRWRkZBhVf8aMGSgpKcHBgwfNCZN1gZMNG6e+wE6ePImWlhbs27dPa/DXlStXMHPmTHh6emrKqqqqAADV1dVYvHgxhg4dCkdHR3h4eGDy5Mn4/vvvNe1nZGRo1hs4cCAKCgoQFRUFV1dXODs7IzIyEidOnNCJy5i216xZo2m7/QfFkSNHNOX9+/fXieXevXs4ceKEpo6Dg+286NYa/Tb1GPWG/V5YWIiKigooFIou67733nuIjo5GUVERXn/9daPaN+Y4drzWfvnlFyQmJsLd3R2enp6YOnUqrl+/rtN2ZWUlUlJSEBgYCEdHRwwYMABxcXE4d+6c8TvACH2l3z/++CMAwMPDA0uWLEFAQAAcHR0xePBgpKSk4M6dOzrrlJSUYMmSJcjKyoKrq6tR2xk7diwA4JtvvnmseJkBxDoFgLKzswVp++zZswSAYmNjDdZpamoiAASAysrKNOWxsbEEgCIiIuj777+ne/fu0cmTJ8ne3p4qKyvp1q1bFBQURN7e3qRSqai2tpauXLlCcXFxJBKJaMuWLVrbUSgUJJPJKDQ0lPLy8qihoYEKCgpozJgx5OjoSMePH9fUNbVtmUxGTz/9tE7fQkJCyNPTU6fcUH1Lys7OJlNPf2v325RjJMT2IyMjqV+/fpSfn2+wjj7x8fEUHx9v0jrbt28nAPT+++/rXV5QUEByuVzze2VlJQUEBBAA+vLLLzXl+fn5On019Tiqr7XY2FjNfj969ChJpVIaP368Vt2ysjIaPHgweXt708GDB6m+vp4uXLhAERER5OTkRHl5eSbtB+73r3H4+PhQUlISXb9+ne7evUuff/45yWQyGj58ONXU1Gito1QqaeHChZrf1edTenq6we3U1tYSAAoPDzcpPnPO7z4oh5ONLlg72WhsbOw02Th06JDe9ebNm0cAaNeuXVrlzc3N5OfnR1KplMrLyzXlCoWCANDZs2e16hcVFREAUigUZrfdW5INa/fblGMkxPYjIiLIw8PD5D8c5nwYr1+/ngDQxo0b9S7v+EeX6NEfWLFYTDKZjH766SdNWce+mnoc1deaSqXS6RcAqqys1JS99NJLBIB27NihVffWrVskkUgoJCTEyD2gX1/st1KpJAAUFBRELS0tWsvWrFlDACgtLU1TlpmZSUOGDKGGhgZNmTHJBhGRSCSiYcOGmRQfJxtGyeHHKDbu1q1bAACxWKx161vtd7/7nd719u7dCwCYMmWKVrlEIkFUVBSampp0bhfKZDLNrUS10aNHw8/PD4WFhZpYzGm7N7CFfht7jIRw/Phx3LlzB6GhoYJtQ009BkEsFhu9zpNPPomMjAzcu3cPCQkJaGpq0lvP3OM4fvx4rd8DAgIAPJrxoLZv3z7Y2dlh6tSpWnV9fHwwatQonDlzBiUlJUb3yRi9vd8ymQwA8Nxzz+k82ps2bRqAXx993Lx5E8uWLUNWVpZmPVM4ODgY3H/s8XCyYeNyc3MBAKGhoXo/ePVdUPfv30dtbS2cnJz0Pq9Uj+guLy/XKnd3d9cbg5eXFwDg9u3bZrfd09lKv405Rr2Bk5MTgEcvcjJFSkoKEhMTceHCBb3TZR/nOMrlcq3fHR0dAQBtbW1abbe1tUEul+u8XEs99uDnn382qU/G6M39DgwMBAB4enrqLFOf95WVlQAAlUqF2tpaPPvss1oxqKe+pqWlacquXbum015rayukUqlZcbLOcbJhw9ra2rBx40YAwGuvvWb0ehKJBHK5HM3Nzaivr9dZXlFRAeDRfx3tVVdX632fh/oPmJeXl1lt29nZ4cGDBzp1a2pq9MYvEokMdc1qbKXfxhwjIbffXXx9fQEAtbW1Jq+7detWjBgxAllZWdi+fbvWMnOvDWNIJBK4u7vDwcEBLS0tICK9P5GRkSa3bYze2m/1IGd9d+3U5706WXrttdf0blu9P9LT0zVlw4YN02qrrq4ORKQ595hlcbJhw1auXIlTp05hxowZSEhIMGndGTNmAIDONK779+/j2LFjkEqlUCqVWsuam5s1byhUO3/+PMrKyqBQKDQXoalt+/r6orS0VKtueXk5bt68qTd2Z2dnrT+SI0aMQGZmZpd9Fpot9NvYYyTU9ruL+r0J5tx6d3Fxwddffw2ZTKZ3yrg514ax4uLi0NraqncG17p16zBo0CDB3uPQW/v9/PPPw9/fH0eOHNGZ4qt+M+j06dPNars99bVi6J0d7DF15wiRngjdOED04cOHVFFRQfv27aOJEycSAHr55ZepsbFRZ1314K2mpia9bXcceV5XV6c18jwzM1OrvkKhILlcTlFRUSbPRumq7UWLFhEA+vTTT6m+vp6uXbtGM2fOJH9/f70DFSdNmkRyuZxu3rxJeXl55ODgQJcuXTJ5/3bGErNRurvfphwjIbbfnbNR2trayMvLy+CAVX0DJTv68ssvCUCXszK6Oo6GrrXly5frDNitqKigoUOH0pAhQ+jQoUNUU1ND1dXVtGnTJnJ2dtb5LElKSiIAVFxc3OU+6cv9Pnz4MDk4OFBsbCxdvXqV7t69S1988QXJZDKaMGGC3s/I9owZILpz504CQHv37jUqJjUeIGoUno3SFaGSDZlMppllov4RiUQkl8tp9OjR9Oqrr9KZM2d01svPz9dZz9AfzaqqKkpNTaWgoCASi8Ukl8tJqVTSsWPHdOoqFAry9/enS5cukVKpJFdXV5JKpRQREUG5ubmP1XZNTQ3Nnz+ffH19SSqVUlhYGBUUFFBISIgm/uXLl2vqX758mcLDw0kmk1FAQIDBGQmPw5xkg8i6/Tb1GFl6++Hh4d02G4WI6O233yYHBwcqLS3VlFVWVuqc+53NdHj11Vf1JlbGHEd919o777xDRKRTPmXKFM161dXVtHjxYhoyZAiJxWIaMGAARUdH09GjR3XimDhxIrm4uFBra2un+6Kv9ru9vLw8UiqVJJfLydHRkUaOHEmrV6/uNNFITk7W+3mpVCp16iYkJJC/vz89ePDA6JiIONkwUo6IqA996YYZRCIRsrOzMXPmTGuHIqixY8eiqqrK4iPlbVVOTg4SExN71HfO9NRjpH4EuHv3bpPWq62txahRozB16lRs2rRJiNCsqqamBn5+fkhKSsKWLVusHU63scV+FxYWIjg4GDt37sSsWbNMWtfc87uP2c1jNhhjNkkul0OlUmHPnj2agdK9BREhJSUFbm5uSE9Pt3Y43cYW+11cXIy4uDisXLnS5ESDGY+TDcaYzQoODsbp06dx+PBh1NXVWTsci6moqEBxcTGOHTtm1gyQnsoW+71582asXbsWa9eutXYovRonG32c+nsxCgsLUVpaCpFIhFWrVlk7LNZOXz9GgYGBOHDgANzc3KwdisX4+PggNzcXo0aNsnYo3coW+71u3Tq+o9ENbOcbrphVLF26FEuXLrV2GKwTfIwYYz0d39lgjDHGmKA42WCMMcaYoDjZYIwxxpigONlgjDHGmKA42WCMMcaYoPgNol2wpW/CZIwxZnvi4+P5DaKd281TX7uQnZ1t7RAYsxn5+fn4+OOP+bpgrJ2AgABrh2Dz+M4GY8xoPfE7ZRhjVsffjcIYY4wxYXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFBOVg7AMaYbWpubkZZWZlWWUVFBQCguLhYq9ze3h6DBw/uttgYYz2LiIjI2kEwxmzP3bt34e3tjZaWli7rPv/88zh48GA3RMUY64F282MUxpheHh4eiI6Ohp1d1x8Ts2bN6oaIGGM9FScbjDGD5syZg65ufkokEsyYMaObImKM9UScbDDGDIqJiYGTk5PB5Q4ODoiJiYGLi0s3RsUY62k42WCMGeTs7IwZM2ZALBbrXf7w4UMkJSV1c1SMsZ6Gkw3GWKdefPFFg4NEZTIZJk2a1M0RMcZ6Gk42GGOdio6Ohlwu1ykXi8VITEyERCKxQlSMsZ6Ekw3GWKfEYjFmzZoFR0dHrfKWlha8+OKLVoqKMdaTcLLBGOvS7Nmz8eDBA62y/v37IyIiwkoRMcZ6Ek42GGNdCg8Ph7e3t+Z3sViMuXPnwt7e3opRMcZ6Ck42GGNdsrOzw9y5czWPUlpaWjB79mwrR8UY6yk42WCMGWXWrFmaRykBAQEYN26clSNijPUUnGwwxowSEhKCYcOGAQDmzZsHkUhk5YgYYz0Ff+uriRISEqwdAmNWo36M8q9//YuvBdZnhYaGYvHixdYOo0fhOxsm2rNnD0pKSqwdBjNRSUkJ9uzZY+0werxBgwbB3d0dbm5uBuucPHkSJ0+e7MaoGOs+J0+eRH5+vrXD6HH4zoYZ3nzzTcycOdPaYTAT5OTkIDExEbt377Z2KD3ed999h+eee87gcvUdD97XrDfiO3rm4TsbjDGTdJZoMMaYPpxsMMYYY0xQnGwwxhhjTFCcbDDGGGNMUJxsMIMOHTqE4cOHw8HBtHHEX331FUQiEUQiEZycnKwSA+u5bty4gZiYGNTV1aGqqkpzLolEIgQHB6O5uVlnnY71RCJRj37pWF/td3stLS3YsGEDQkJC4OrqCi8vL0yePBkqlQpE1Om6MTExEIlEWLNmjc6yFStWIDs7W6iwmQGcbDAd169fR0xMDFauXImKigqT1581axaICFFRUVaLQUgNDQ34zW9+g6lTp1o7lF7n3LlzGDduHKKjo+Hm5ob+/fuDiFBQUKBZnpqaqrOeul5+fj48PT1BRDh9+nR3h28xfbXfavfu3cPEiROxbds2bNiwAbdv38bp06fh4uKCmJgYXLx40eC6X3zxBVQqlcHlCxYswMqVK5GWliZE6MwATjaYjrS0NDz11FM4c+YMXF1d+2wMhhAR2tra0NbWZu1QuuTi4oKwsDBrh2GUuro6TJs2DS+88AIWLVqks1wikcDT0xObN2/Grl27rBChdfTFfi9btgxFRUX49ttv8cwzz0AqlWLQoEHYtm0bJBKJwfXKysqQmpqKuXPnGqwzdOhQ7N27F2vXrkVOTo4Q4TM9ONlgOv72t79hxYoVVn10YQsxGOLq6orr16/j0KFD1g6lV1m/fj3Ky8vx7rvv6l3u5OSEHTt2wM7ODsnJybh69Wo3R2gdfa3fFRUVyMzMRFJSktY3DQOATCZDc3MznnjiCb3rLliwAAkJCYiOju50GwqFAvHx8ViyZAlaW1stFjszjJMNpkMqlVo7BJuIgXUfIsLWrVsxYcIE+Pn5GaynVCqxatUq1NfXIyEhQe84ht6oL/V7//79ePjwocl35LKysnDx4kVkZGQYVX/GjBkoKSnBwYMHzQmTmYiTjW5QXV2NxYsXY+jQoZBIJBg4cCCee+45bNu2DU1NTXrrOTo6wsPDA5MnT8b333+vqbNv3z6twWC//PILEhMT4e7uDk9PT0ydOhXXr18HANTU1OgMHlMPmGptbdUqj4+PN7t/ly9fxvTp0yGXyyGTyRAeHo7c3Fyz27NlHfe/+kPflOMCABkZGZq6AwcOREFBAaKiouDq6gpnZ2dERkbixIkTmvpr1qzR1G//IXzkyBFNef/+/XXav3fvHk6cOKGpY4t3igCgsLAQFRUVUCgUXdZ97733EB0djaKiIrz++utGtW/pa6u9yspKpKSkIDAwEI6OjhgwYADi4uJw7tw543eAEfpKv3/88UcAgIeHB5YsWYKAgAA4Ojpi8ODBSElJwZ07d3TWKSkpwZIlS5CVlWUD5tGFAAAgAElEQVT0Y9exY8cCAL755pvHipcZiZhJAFB2drbR9W/dukVBQUHk4+NDKpWK6urqqLy8nNLT0wkAbdiwQauet7c3qVQqqq2tpStXrlBcXByJRCLasmWLVruxsbEEgGJjYykvL48aGhro6NGjJJVKafz48Vp1J02aRHZ2dnTt2jWd+EJDQ2nnzp0G4/f39yd7e3uDy3/++Wdyd3cnf39/+vbbb6m+vp6KioooOjqaAgMDSSKRGL2vzI3BGNnZ2WTJ0129/5uamvSWG3NciIgUCgXJZDIKDQ3V1C8oKKAxY8aQo6MjHT9+XKu+TCajp59+WqedkJAQ8vT01Ck3VF8tMjKS+vXrR/n5+cZ2vUvx8fEUHx9v0jrbt28nAPT+++/rXV5QUEByuVzze2VlJQUEBBAA+vLLLzXl+fn5OvtByGurrKyMBg8eTN7e3nTw4EGqr6+nCxcuUEREBDk5OVFeXp5J+4H7/WscPj4+lJSURNevX6e7d+/S559/TjKZjIYPH041NTVa6yiVSlq4cKHmd/X5lJ6ebnA7tbW1BIDCw8NNis+c85tRDicbJjI12Zg3b57BdSZNmqRJNtT1du3apVWnubmZ/Pz8SCqVUnl5uaZcfUGqVCqt+vHx8QSAKisrNWXfffcdAdC6GImIcnNzadCgQdTS0mIw/q7+0CckJBAA2rNnj1Z5aWkpSSSSPptsGHNciB4lGwDo7NmzWuVFRUUEgBQKhVa5pZONiIgI8vDweOw/iu2Z82G8fv16AkAbN27Uu7zjH12iR39gxWIxyWQy+umnnzRlHfeDkNfWSy+9RABox44dWnVv3bpFEomEQkJCjNwD+vXFfiuVSgJAQUFBOp9Na9asIQCUlpamKcvMzKQhQ4ZQQ0ODpsyYZIOISCQS0bBhw0yKj5MNs+TwYxSB7d27FwAwefJknWWHDx/WTGdT15syZYpWHYlEgqioKDQ1Nem93Td+/Hit3wMCAgA8GpWtFhUVheDgYGzbtg3V1dWa8r/85S9ITU19rFvrR44cAfDomXJ7fn5+GD58uNnt9nTGHBc1mUymuaWrNnr0aPj5+aGwsBC3bt0SLM7jx4/jzp07CA0NFWwbxlA/jhKLxUav8+STTyIjIwP37t1DQkKC1iPJ9oS8tvbt2wc7OzudadA+Pj4YNWoUzpw5Y/Fvie7t/ZbJZAAefQdPx8+madOmAfj10cfNmzexbNkyZGVladYzhYODg8H9xyyLkw0B3b9/H7W1tXBycur0OWJX9dQjssvLy3WWyeVyrd8dHR0BQGda5pIlS9DY2IjPPvsMAHD16lX885//xPz5803rVIe46+vr4eTkBBcXF53lXl5eZrfd0xl7XADA3d1dbxvq/Xf79m0LR2d71C9/a2lpMWm9lJQUJCYm4sKFC3qnywp5banbbmtrg1wu1xkfpR578PPPP5vUJ2P05n4HBgYCADw9PXWWqa+JyspKAIBKpUJtbS2effZZrRjUU1/T0tI0ZdeuXdNpr7W1lQejdxNONgQkkUggl8vR3NyM+vp6s+upX2rl4+NjdiyJiYkICAjAX//6V9y/fx8fffQRFixY8FjvsJBIJHB1dUVzczMaGhp0lusbyMV0VVdX630jojrJaJ+02dnZ4cGDBzp1a2pq9LYtEoksFKWwfH19AQC1tbUmr7t161aMGDECWVlZ2L59u9YyIa8tiUQCd3d3ODg4oKWlBUSk9ycyMtLkto3RW/utHgCt746e+ppQJ0uvvfaa3m2r90d6erqmbNiwYVpt1dXVgYg05x4TFicbApsxYwYA6H0nQ3BwMN58802teh2nYd2/fx/Hjh2DVCrVeVRhCgcHB7zxxhu4ffs2PvroI3z11VdISUkxuz019eMh9eMUtaqqKly5cuWx2+8LmpubNW+KVDt//jzKysqgUCi0Pgx9fX1RWlqqVbe8vBw3b97U27azs7NWcjJixAhkZmZaMHrLUL83wZxb7y4uLvj6668hk8k0d+7aE/LaiouLQ2trq9bMIbV169Zh0KBBgr3Hobf2+/nnn4e/vz+OHDmiM8VX/WbQ6dOnm9V2e+rryNA7O5hlcbIhsA8++ABBQUF48803cfDgQdTX16OkpAQLFy7ErVu3NMmGul5qaioOHDiA+vp6XL16FS+++CJu3bqFTz75ROcFN6b605/+BLlcjlWrVmH69Onw9/d/7P69//776NevH1JTU3H06FE0NDTg0qVLmDNnjt5HK0yXXC7H22+/jfz8fNy7dw+nT5/GnDlz4OjoiE8++USrbnR0NMrKyvDXv/4VDQ0NuH79Ot544w2Dj6x++9vf4urVq/jPf/6D/Px8FBcXIzw8XLN84sSJ8PT0xMmTJwXtY1cUCgW8vLxQWFho1vqjRo3C5s2b9S4T8tr64IMPMHToULz88ss4fPgwamtrcefOHWzevBl//vOfkZGRoTXuYM6cORCJRPj3v/9t1vY66o39lkgk2Lp1K6qrqzFr1iz8/PPPqKmpwfbt2/HBBx9gwoQJFvlHST1Ft6sXgDEL6dbxqL0ATJyNQkRUVVVFqampFBQURGKxmHx9fWnWrFl09erVTuvJ5XJSKpV07NgxTZ38/HwCoPXzzjvvaGJr/zNlyhSdWJYtW0YAqLCw0GC8KpVKpy31T8fpckREV65coenTp5Obm5tmmtyBAwcoKipKs94rr7xi0j4zNYauWGo2yt69e3XiSUpKMvu4KBQK8vf3p0uXLpFSqSRXV1eSSqUUERFBubm5Otuvqamh+fPnk6+vL0mlUgoLC6OCggIKCQnRtL98+XJN/cuXL1N4eDjJZDIKCAjQme0RHh5uE7NRiIjefvttcnBwoNLSUk1ZZWWlzv7rbKbDq6++qndWjpDXVnV1NS1evJiGDBlCYrGYBgwYQNHR0XT06FGdOCZOnEguLi7U2tra6b7oq/1uLy8vj5RKJcnlcnJ0dKSRI0fS6tWrqbGx0eA6ycnJej8zlEqlTt2EhATy9/enBw8eGB0TEc9GMVOOiKiLr89jWkQiEbKzszFz5kxrh8JMkJOTg8TExC6/LbK7jR07FlVVVRafsWBNCQkJAIDdu3ebtF5tbS1GjRqFqVOnYtOmTUKEZlU1NTXw8/NDUlIStmzZYu1wuo0t9ruwsBDBwcHYuXMnZs2aZdK65p7ffdxufozCGLMJcrkcKpUKe/bswcaNG60djkUREVJSUuDm5ob09HRrh9NtbLHfxcXFiIuLw8qVK01ONJj5ONlgjNmM4OBgnD59GocPH0ZdXZ21w7GYiooKFBcX49ixY481q6ynscV+b968GWvXrsXatWutHUqfwskG6zYd5+Pr+1m9erW1w+wW6u8uKSwsRGlpKUQiEVatWmXtsGxCYGAgDhw4ADc3N2uHYjE+Pj7Izc3FqFGjrB1Kt7LFfq9bt47vaFiBbX4rE+uVbG28hDUtXboUS5cutXYYjDHWLfjOBmOMMcYExckGY4wxxgTFyQZjjDHGBMXJBmOMMcYExckGY4wxxgTFbxA1UU/5Fk3GGGPCiI+P5zeImmY3T301Q2pqKkJDQ60dBjNBfn4+Pv74Y2RnZ1s7lF5vw4YNAKD5kkHGehP1+c1Mw8mGGUJDQ/m7UXqgjz/+mI9bN1D/x8f7mvVGfEfDPDxmgzHGGGOC4mSDMcYYY4LiZIMxxhhjguJkgzHGGGOC4mTDRhQUFGDevHkICgqCVCpFv3798MQTT+CFF17Af//3f+P69evWDrFThw4dwvDhw+HgYHjMsYuLi863vNrZ2cHDwwMKhQILFy7EmTNnujFqZotu3LiBmJgY1NXVoaqqSut8CQ4ORnNzs846HeuJRCKMGzfOCtFbRl/td3stLS3YsGEDQkJC4OrqCi8vL0yePBkqlarLL3WMiYmBSCTCmjVrdJatWLGCZ6VZAScbVtbW1oZly5bhqaeegpeXFw4fPoyamhr89NNP2LBhA+rq6rBw4UIMGzYMra2t1g5Xx/Xr1xETE4OVK1eioqKi07oNDQ04e/YsACA2NhZEhJaWFly+fBl//vOfcfnyZYwbNw5//OMf0djY2B3hMxtz7tw5jBs3DtHR0XBzc0P//v1BRCgoKNAsT01N1VlPXS8/Px+enp4gIpw+fbq7w7eYvtpvtXv37mHixInYtm0bNmzYgNu3b+P06dNwcXFBTEwMLl68aHDdL774AiqVyuDyBQsWYOXKlUhLSxMidGYAJxtWlpaWhoyMDHz22WdYv349Ro4cCYlEAm9vb/z+97/HkSNHMHnyZGuHaVBaWhqeeuopnDlzBq6uriavb29vD29vb8TGxuIf//gH3nrrLWzbtg2zZ8/u9V9J7+LigrCwsD67/Y7q6uowbdo0vPDCC1i0aJHOcolEAk9PT2zevBm7du2yQoTW0Rf7vWzZMhQVFeHbb7/FM888A6lUikGDBmHbtm2QSCQG1ysrK0Nqairmzp1rsM7QoUOxd+9erF27Fjk5OUKEz/TgZMOKLl++jA8//BAhISFYsGCB3jr29vY2nYH/7W9/w4oVKzp9fGKKDz/8EBMmTMD+/fvx1VdfWaRN1jOsX78e5eXlePfdd/Uud3Jywo4dO2BnZ4fk5GRcvXq1myO0jr7W74qKCmRmZiIpKQne3t5ay2QyGZqbm/HEE0/oXXfBggVISEhAdHR0p9tQKBSIj4/HkiVLbPKOcW/EyYYVZWZmoq2tDQkJCZ3WCw0NBRFZ7A+6JUmlUou2JxKJNP/VfvbZZxZtm9kuIsLWrVsxYcIE+Pn5GaynVCqxatUq1NfXIyEhQe84ht6oL/V7//79ePjwocl33bKysnDx4kVkZGQYVX/GjBkoKSnBwYMHzQmTmYiTDSv65z//CQAYM2aMyetWV1dj8eLFGDp0KBwdHeHh4YHJkyfj+++/19TZt2+f1sCxX375BYmJiXB3d4enpyemTp2qGXhaU1OjM9BMPbiqtbVVqzw+Pt4CvTdM/SFz8uRJtLS0CLqtrhizn9esWaPZN+0/II8cOaIp79+/v6Y8IyMDIpEI9+7dw4kTJzR11MmkerlIJMLAgQNRUFCAqKgouLq6wtnZGZGRkThx4oRg27eGwsJCVFRUQKFQdFn3vffeQ3R0NIqKivD6668b1b6lr5f2KisrkZKSgsDAQDg6OmLAgAGIi4vDuXPnjN8BRugr/f7xxx8BAB4eHliyZAkCAgLg6OiIwYMHIyUlBXfu3NFZp6SkBEuWLEFWVpbRj3PHjh0LAPjmm28eK15mJGImAUDZ2dkWacvX15cA0L/+9S+T1rt16xYFBQWRt7c3qVQqqq2tpStXrlBcXByJRCLasmWLVv3Y2FgCQLGxsZSXl0cNDQ109OhRkkqlNH78eK26kyZNIjs7O7p27ZrOdkNDQ2nnzp0G4/L39yd7e/tOYz979qwmFkOampoIAAGgsrKyTtszVnZ2Npl6upu6n2UyGT399NM67YSEhJCnp6dOuaH6agqFgmQyGYWGhmqOW0FBAY0ZM4YcHR3p+PHjgm4/MjKS+vXrR/n5+Qbr6BMfH0/x8fEmrbN9+3YCQO+//77e5QUFBSSXyzW/V1ZWUkBAAAGgL7/8UlOen5+v01chr5eysjIaPHgweXt708GDB6m+vp4uXLhAERER5OTkRHl5eSbtB+73r3H4+PhQUlISXb9+ne7evUuff/45yWQyGj58ONXU1Gito1QqaeHChZrf1edTenq6we3U1tYSAAoPDzcpPnPOb0Y5nGyYSIhk49SpUyatN2/ePAJAu3bt0ipvbm4mPz8/kkqlVF5erilXX7wqlUqrfnx8PAGgyspKTdl3331HALQuXCKi3NxcGjRoELW0tBiMy1LJRmNjo00kG6buZyGSDQB09uxZrfKioiICQAqFwqj2zN1+REQEeXh4mPyHw5wP4/Xr1xMA2rhxo97lHf/oEj36AysWi0kmk9FPP/2kKevYVyGvl5deeokA0I4dO7Tq3rp1iyQSCYWEhBi5B/Tri/1WKpUEgIKCgnQ+b9asWUMAKC0tTVOWmZlJQ4YMoYaGBk2ZMckGEZFIJKJhw4aZFB8nG2bJ4ccoVqR+Nl1VVWXSenv37gUATJkyRatcIpEgKioKTU1Nem8Njh8/Xuv3gIAAAI9GcKtFRUUhODgY27ZtQ3V1tab8L3/5C1JTU7vlVvutW7cAAGKxWOv2f3czdz9bkkwm09zuVRs9ejT8/PxQWFio2VdCOH78OO7cudMt33CsHoMgFouNXufJJ59ERkYG7t27h4SEBDQ1NemtJ+T1sm/fPtjZ2WHq1KladX18fDBq1CicOXMGJSUlRvfJGL293zKZDADw3HPP6XzeTJs2DcCvjz5u3ryJZcuWISsrS7OeKRwcHAzuP2ZZnGxYUUREBACgqKjI6HXu37+P2tpaODk56X02qR69XV5errNMLpdr/e7o6Ajg0bs+2luyZAkaGxs1AzSvXr2Kf/7zn5g/f77RcT6O3NxcAI8Gxpryx8eSHmc/W5K7u7veci8vLwDA7du3Bd1+d3FycgIAk8fopKSkIDExERcuXNA7XVbI60XddltbG+Ryuc6YJ/XYg59//tmkPhmjN/c7MDAQAODp6amzTH3eV1ZWAgBUKhVqa2vx7LPPasWgnvqalpamKbt27ZpOe62trRYf5M7042TDipKTk+Hg4IA9e/Z0Wu+tt96CnZ0dLl++DIlEArlcjubmZtTX1+vUVb9Yy8fHx+y4EhMTERAQgL/+9a+4f/8+PvroIyxYsMCs92iYqq2tDRs3bgQAvPbaa4JvzxBz9rOdnR0ePHigU7empkbvNkQiUZdxVFdX633fiDrJUH/4CrX97uLr6wsAqK2tNXndrVu3YsSIEcjKysL27du1lgl5vUgkEri7u8PBwQEtLS0gIr0/kZGRJrdtjN7ab/UgZ3137dTnvTpZeu211/RuW70/0tPTNWXDhg3Taquurg5EpDn3mLA42bCi4cOH47333sPp06eRlZWlt86VK1ewefNmzJw5EyNHjgTwaMoWAJ0pW/fv38exY8cglUqhVCrNjsvBwQFvvPEGbt++jY8++ghfffUVUlJSzG7PFCtXrsSpU6cwY8aMLqcEC83U/ezr64vS0lKtuuXl5bh586be9p2dnbWSgxEjRiAzM1OrTnNzs+Ytkmrnz59HWVkZFAqF1gelENvvLur3Jphz693FxQVff/01ZDKZ3unSQl4vcXFxaG1t1ZodpLZu3ToMGjRIsPc49NZ+P//88/D398eRI0d0pviq3ww6ffp0s9puT32tGHpnB7Owbh0i0gvAggNE1VasWEFisZiWL19OV65cofv371NJSQlt3bqVfH19KSwsTGvwU8dR5nV1dVqjzDMzM7XaVw/8ampq0ipfvny53gGIRER1dXUkl8tJJBLRH/7wB6P6Yc4A0YcPH1JFRQXt27ePJk6cSADo5ZdfpsbGRqO2aSxLzEbpaj8vWrSIANCnn35K9fX1dO3aNZo5cyb5+/vrHaA5adIkksvldPPmTcrLyyMHBwe6dOmSZrlCoSC5XE5RUVFGzUax9Pa7czZKW1sbeXl5GRywqm+gZEdffvklAehyVoYlr5eKigoaOnQoDRkyhA4dOkQ1NTVUXV1NmzZtImdnZ53PiqSkJAJAxcXFXe6Tvtzvw4cPk4ODA8XGxtLVq1fp7t279MUXX5BMJqMJEyZ0+flgzADRnTt3EgDau3evUTGp8QBRs/BsFFMJkWwQEZ06dYrmzp1LAQEBJBaLydXVlZ588kn65JNP6P79+zr1q6qqKDU1lYKCgkgsFpNcLielUknHjh3T1MnPz9fM6lD/vPPOO5p+tP+ZMmWKzjaWLVtGAKiwsNBg3CqVSqct9Y++qaEd64hEIpLL5TR69Gh69dVX6cyZM+buwk6Zk2wQGbef1Wpqamj+/Pnk6+tLUqmUwsLCqKCggEJCQjT9Xb58uab+5cuXKTw8nGQyGQUEBOjMxFAoFOTv70+XLl0ipVJJrq6uJJVKKSIignJzcwXffnh4eLfNRiEievvtt8nBwYFKS0s1ZZWVlTrnTGczHV599VW9iZWQ10t1dTUtXryYhgwZQmKxmAYMGEDR0dF09OhRnTgmTpxILi4u1Nra2um+6Kv9bi8vL4+USiXJ5XJydHSkkSNH0urVqztNNJKTk/V+FimVSp26CQkJ5O/vTw8ePDA6JiJONsyUIyLq5V9AYWEikQjZ2dmYOXOmtUNhJsjJyUFiYmKP+r6VsWPHoqqqyuKzGYSmfvy1e/duk9arra3FqFGjMHXqVGzatEmI0KyqpqYGfn5+SEpKwpYtW6wdTrexxX4XFhYiODgYO3fuxKxZs0xa19zzu4/bzWM2GGM2QS6XQ6VSYc+ePZpBwr0FESElJQVubm5IT0+3djjdxhb7XVxcjLi4OKxcudLkRIOZj5MNxpjNCA4OxunTp3H48GHU1dVZOxyLqaioQHFxMY4dO/ZYM8V6Glvs9+bNm7F27VqsXbvW2qH0Kbb3zV6M9XEZGRlYtmyZ5neRSIR33nlH8101vV1gYCAOHDhg7TAsysfHR/P+mL7EFvu9bt06a4fQJ3GywZiNWbp0KZYuXWrtMBhjzGL4MQpjjDHGBMXJBmOMMcYExckGY4wxxgTFyQZjjDHGBMUDRM2Qn59v7RCYidTHLCcnx8qR9H7ql5Dxvma9UUlJCQYOHGjtMHocfoOoiWzpmzIZY4x1v/j4eH6DqGl2850NE3Fuxvqynvjad8aY9fGYDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCYqTDcYYY4wJipMNxhhjjAmKkw3GGGOMCcrB2gEwxmzT7du38T//8z9aZUVFRQCAdevWaZX369cPCxYs6LbYGGM9i4iIyNpBMMZsT2trK3x8fHD37l2IxWKD9e7fv4/k5GRs2rSpG6NjjPUgu/kxCmNMLwcHB8yePRv29va4f/++wR8AePHFF60cLWPMlnGywRgzaPbs2Whpaem0jo+PD8LCwropIsZYT8TJBmPMoNDQUAwcONDgckdHR8ydOxd2dvxRwhgzjD8hGGMGiUQizJkzx+CYjQcPHmD27NndHBVjrKfhZIMx1qnOHqUMGTIEwcHB3RwRY6yn4WSDMdapMWPGYMSIETrljo6OeOmll6wQEWOsp+FkgzHWpblz5+o8Snnw4AFmzZplpYgYYz0JJxuMsS7NmTMHra2tmt9FIhEUCgWGDx9uxagYYz0FJxuMsS4NHjwYv/3tbyESiQAA9vb2/AiFMWY0TjYYY0b5wx/+AHt7ewDAw4cPMXPmTCtHxBjrKTjZYIwZZebMmWhra4NIJMLTTz8Nf39/a4fEGOshONlgjBnFx8cHERERICJ+hMIYM4nOF7Hl5OQgMTHRWvEwxhhjrAfT8/2uuw1+xXx2draw0TDGbEZiYiJSU1MRGhraab2mpiZkZmbijTfe6KbIepf8/Hx8/PHH/PnKeiX1+a2PwWSDB38x1nckJiYiNDTUqOv+97//Pfz8/Lohqt7p448/5s9X1msZSjZ4zAZjzCScaDDGTMXJBmOMMcYExckGY4wxxgTFyQZjjDHGBNXtyUZGRgZEIhFEIhEGDhxotTas0TYznq0fh0OHDmH48OFwcDA4xlqvr776StMvJycnq8TAeq4bN24gJiYGdXV1qKqq0pxLIpEIwcHBaG5u1lmnYz2RSIRx48ZZIXrL6Kv9bq+lpQUbNmxASEgIXF1d4eXlhcmTJ0OlUumbdqolJiYGIpEIa9as0Vm2YsUK4WZKUQfZ2dmkp9jiFAoF+fv7W70Na7TNjKfvONTX19OwYcNoypQp3R7PtWvXaNq0aTRmzBhyc3Mje3t7s9qJiooiiURi1RjaA0DZ2dmP3Y41j01P8Difr2fPnqX+/fvTp59+qlVeUFBAAAgAJScnG1w/Pz+fPD09zdq2Leqr/W5oaKCwsDAaM2YM/fDDD9TY2Eg3btyg+Ph4AkDnz583uO7nn3+u2Wfp6ek6y69du0ZBQUG0atUqs2Lr5PzO4ccorMchIrS1taGtra3bt52WloannnoKZ86cgaura7dv31ZiMMSax8ZULi4uCAsLs3YYRqmrq8O0adPwwgsvYNGiRTrLJRIJPD09sXnzZuzatcsKEVpHX+z3smXLUFRUhG+//RbPPPMMpFIpBg0ahG3btkEikRhcr6ysDKmpqZg7d67BOkOHDsXevXuxdu1a5OTkWDRuTjZYj+Pq6orr16/j0KFD3b7tv/3tb1ixYoVVH13YQgyGWPPY9Gbr169HeXk53n33Xb3LnZycsGPHDtjZ2SE5ORlXr17t5gito6/1u6KiApmZmUhKSoK3t7fWMplMhubmZjzxxBN6112wYAESEhIQHR3d6TYUCgXi4+OxZMkStLa2Wix2TjYYM4FUKrV2CDYRA+s+RIStW7diwoQJnb7jRKlUYtWqVaivr0dCQoLecQy9UV/q9/79+/Hw4UOT78hlZWXh4sWLyMjIMKr+jBkzUFJSgoMHD5oTpl4WSzYuX76M6dOnQy6Xw9nZGb/73e9w4MABPPfcc5rBOfPnz++ynerqaixevBhDhw6Fo6MjPDw8MHnyZHz//fedbnvKlCmabUdGRuLEiRNadVpbW5GdnY3f//738PHxgVQqxejRo/HJJ59Y7Jbvvn37tAYj3bhxA4mJiXB1dayAHnEAACAASURBVIWnpyfmzp2Lu3fv4pdffsG0adPg6uoKX19fLFiwAPX19WbFGxYWprXNOXPmAIDWfheJRKipqTGqDx0HZhYUFCAqKgqurq4G9y1g2nEz5xgb2sfqD5aO5b/88gsSExPh7u4OT09PTJ06FdevX9dpz1LnrSHt25fJZAgPD0dubq7Z7dkySx0bU8/BNWvWaOq3/xA+cuSIprx///467d+7dw8nTpzQ1LHFO0UAUFhYiIqKCigUii7rvvfee4iOjkZRURFef/11o9o35no09/qqrKxESkoKAgMD4ejoiAEDBiAuLg7nzp0zfgcYoa/0+8cffwQAeHh4YMmSJQgICICjoyMGDx6MlJQU3LlzR2edkpISLFmyBFlZWUY/dh07diwA4JtvvnmseLWYMMDDoJ9//pnc3d3J39+fvv32W6qvr6cLFy7Qc889RwMGDNA7EE7fwL9bt25RUFAQeXt7k0qlotraWrpy5QrFxcWRSCSiLVu26LQhl8spMjKScnNzqb6+ngoKCmjMmDHk6OhIx48f19RVqVQEgN5//326c+cOVVZW0n/913+RnZ0dLV261Kj4jBUbG0sAKC4ujk6fPk0NDQ30xRdfEACaPHkyxcbG0tmzZ6m+vp42bdpEAOjNN9/UasOUeM+dO0cymYwUCgU1NDQQEVFzczNNmDCBdu3aZVYfFAoFyWQyCg0Npby8PGpoaDC4b005buYcY33HQb2Pm5qa9JbHxsZq4j569ChJpVIaP368Vl1zztv2/P39Ox2cqa/9oqIiio6OpsDAQLMHiJoSg7FgoQGiRJY5NkSmnYNERDKZjJ5++mmddkJCQvQOEDRUXy0yMpL69etH+fn5xna9S+Z8vm7fvl3zWaBPQUEByeVyze+VlZUUEBBAAOjLL7/UlOsbKGnq9WjKMSwrK6PBgweTt7c3HTx4UHN9RUREkJOTE+Xl5Zm0H7jfv8bh4+NDSUlJdP36dbp79y59/vnnJJPJaPjw4VRTU6O1jlKppIULF2p+V59P+gaIqtXW1hIACg8PNym+zgaIWiTZSEhIIAC0Z88erfLbt2+Ts7Oz0cnGvHnzCIDOH8jm5mby8/MjqVRK5eXlWm0A0PkwKCoqIgCkUCg0ZSqVip599lmdOObMmUNisZhqa2u7jM9Y6hPi4MGDWuWjRo0iAPTDDz9olQcFBdGIESO0ykyNNycnR5PgtLW10UsvvURvv/22WfET/bpvz549q1Wub9+actzMOcbmJBsqlUqrXD1Su7KyUlNmznnbXld/6A21X1paShKJpM8mG8YcGyLTzkEiyycbERER5OHh8dh/FNsz5/N1/fr1BIA2btyod3nHP7pEj/7AisVikslk9NNPP2nKOu4HU69HU47hSy+9RABox44dWnVv3bpFEomEQkJCjNwD+vXFfiuVSgJAQUFB1NLSorVszZo1BIDS0tI0ZZmZmTRkyBDNP6FExiUbREQikYiGDRtmUnyCz0Y5cuQIgEfPztobMGAARo4caXQ7e/fuBQBMmTJFq1wikSAqKgpNTU06t3WcnJwwYcIErbLRo0fDz88PhYWFuHXrFgBg6tSpem/TKxQKtLS04OLFi0bHaayOc7rVz1s7lvv7+6OsrEyrzNR4ExIS8M477+Dvf/87wsLCUF1djfT09MeKXyaTaW6nqenbt6YcN3OOsTnGjx+v9XtAQAAAaO1nS523hhhq38/PD8OHD3/s9nsqY46NmrHnoBCOHz+OO3fudPlNuEJTP44Si8VGr/Pkk08iIyMD9+7dQ0JCApqamvTWM/d6NOYY7tu3D3Z2dpg6dapWXR8fH4waNQpnzpxBSUmJ0X0yRm/vt0wmA/DoMXnHx37Tpk0D8Oujj5s3b2LZsmXIysrSrGcKBwcHg/vPHI+dbNy/fx/19fVwcnKCi4uLznIPDw+j26mtrYWTk5Pe50rqkbfl5eVa5Z6enhCJRDr1vby8AAC3b98GANTW1uLdd9/F6NGj4eHhoXkGt2zZMgBAY2OjUXGaws3NTet3Ozs72Nvbw9nZWavc3t5eZ9yIOfGmp6djwoQJyMvLQ0JCAuzsHu/wuru76y1vv29NOW7mHmNzyOVyrd8dHR0BQLOfLXXeGtJV++p92Bd1dWzaM+Yc7O3UL39raWkxab2UlBQkJibiwoULeqfLPs71aMz1VVtbi7a2Nsjlcp2Xa6nHHvz8888m9ckYvbnfgYGBAB793etIfU1UVlYCAFQqFWpra/Hss89qxaCe+pqWlqYpu3btmk57ra2tFh2M/tjJhkQigaurK5qbm9HQ0KCz3NgPA4lEArlcjubmZp3BksCjKT/Ao+ywvdraWr3tqberPgDTpk1Deno6FixYgKtXr6KtrQ1EhA0bNgBAl29d627mxHv8+HHU1tZi9OjRWLhwIQoLCx8rhurqar3bab9vTTlu5h5jIVjqvDW3fX0DuZguY85BNTs7Ozx48ECnrqHB0fr+SbFFvr6+AAx/1nVm69atGDFiBLKysrB9+3atZUJejxKJBO7u7nBwcEBLSwuISO9PZGSkyW0bo7f2Wz0AWt8dPfU1oU6WXnvtNb3bVu+P9PR0TdmwYcO02qqrqwMRac49S7DIY5TJkycD+PW2sVp5eblJ855nzJgBADrTbe7fv49jx45BKpXq3JJuaGjQ+aN6/vx5lJWVQaFQwNfXFw8fPsSJEyfg4+ODlJQUDBgwQPNBY8nbRJZiTrz//ve/8corr+Drr7/G/v37IZVKERsbq8lyzdHc3IyCggKtso77FjDtuJlzjIViqfPW1Parqqpw5cqVx26/LzD2HAQe/VEuLS3VqlteXo6bN2/qbdvZ2VkrORkxYgQyMzMtGL1lqN+bYM6tdxcXF3z99deQyWT47LPPdJYLeT3GxcWhtbVV7+y1devWYdCgQRZ9j0N7vbXfzz//PPz9/XHkyBGdKb4qlQoAMH36dLPabk99HRl6Z4dZTBjgYdC1a9eoX79+WqPuz58/T5MmTaLBgwebPRulrq5Oa4RwZmamThsymYzCwsLo5MmTnY5WnzhxIgGg9evXU2VlJTU2NtI//vEPGjRoEAGgo0ePdhmfsQwNkFMqlXoH80VERJBMJtMqMyXe+vp6GjNmDP3v//6vpuz48eMkFovpmWeeoQcPHpjcB/VMn6ioKJNno3R23Mw5xuYMEO1Yvnz5cp3Bhuact+11NThTX/sXL14kpVJJXl5efXaAqDHHhsi0c5CIaNGiRQSAPv30U6qvr6dr167RzJkzyd/fX+8A0UmTJpFcLqebN29SXl4eOTg40KVLlzTLbWU2SltbG3l5eRkczKpvoGRHX375JQHoclZGV9ejKcewoqKChg4dSkOGDKFDhw5RTU0NVVdX06ZNm8jZ2VnnfEtKSiIAVFxc3OU+6cv9Pnz4MDk4OFBsbCxdvXqV7t69S1988QXJZDKaMGECNTY2drq+MQNEd+7cSQBo7969RsWkJvhsFCKiK1eu0PTp08nNzY2cnZ3pqaeeoh9++IGeffZZcnZ21tT7y1/+onk3u/rnnXfe0Syvqqqi1NRUCgoKIrFYTHK5nJRKJR07dkxvG/7+/nTq1CmKjIwkFxcXkkqlFBERQbm5uVrxVVZWUnJyMgUEBJBYLCZvb2+aN28erVixQtNWSEhIl/F1Jj8/X++67d/hr/754IMP6P/+7/90yt977z2T4n3ttde01j9//jxVVlbqtNvVyOOO1H/kL126REqlklxdXQ3uW2OPmyl1DR2HvXv36pQnJSUZ3PdEpFPe/ns7jD1v1dRTkvX9dJwu17F99TS5AwcOUFRUlGa9V155xaRjY2oMxrBEsmHpY2PqOVhTU0Pz588nX19fkkqlFBYWRgUFBRQSEqJpf/ny5Zr6ly9fpvDwcJLJZBQQEKAz2yM8PNwmZqMQEb399tvk4OBApaWlmjJ913lnMx1effVVvUmXMdejucewurqaFi9eTEOGDCGxWEwDBgyg6OhonX/uiB79g+Xi4kKtra2d7ou+2u/28vLySKlUklwuJ0dHRxo5ciStXr2600QjOTlZ72eGUqnUqZuQkED+/v4m/6PaLcmGISNGjKBBgwZZrD3WPfr6F9H1tfPWknc2LKU3noPmfr7W1NSQv79/p1841pPdvXuXpFIpzZ8/39qhdCtb7Pe5c+dIJBKZ9Y4mwae+lpeXo1+/fjqjpX/55Rdcv34dEydOtMRmGLMoPm9ZTyGXy6FSqbBnzx5s3LjR2uFYFBEhJSUFbm5ujz1dvyexxX4XFxcjLi4OK1euxKxZsyzatsVeV3737l0kJyfjP//5DxobG3Hq1CkkJibCzc0NaWlpltoMYxbF5y3rKYKDg3H69GkcPnwYdXV11g7HYioqKlBcXIxjx451y0w0W2GL/d68eTPWrl2LtWvXWrxtiyQbPj4++O6771BTU4NnnnkGHh4eiImJwW9+8xucOnUKQ4YMscRmrKrjfGl9P6tXr7Z2mJ0ypg8uLi4QiUQoLCxEaWkpRCIRVq1aZe3QBWFL521vOL8sRf3dJX3hHDRVYGAgDhw4oPMOn57Mx8cHubm5GDVqlLVD6Va22O9169ZZ/I6GmsW+eSgqKgpRUVGWas7mkI29h8McvaEPlmYr5y0fm18tXboUS5cutXYYjDEL4q+YZ4wxxpigONlgjDHGmKA42WCMMcaYoDjZYIwxxpigDA4QzcnJ6c44GGNWlp+fb+0Qej31PubPV9YbdfYZIqIOw+BzcnKQmJgoeFCMMcYY6330zK7bbfDOBk/FY6zvEIlEyM7OxsyZM60dSq+m/meOP19Zb9TZzQoes8EYY4wxQXGywRhjjDFBcbLBGGOMMUFxssEYY4wxQXGywRhjjDFB2Vyyce7cOfzpT3/CiBEj4OLiAhcXFwwfPhzR0dH48MMPcfbsWc1IbvW3Q4pEIgwcONCs7VmiDVPbbmho0PlGT2PecbBs2TKtddasWWPReDtSfwNsxx87OzsMGDAA06dPR0FBgaAxCHl8LOHQoUMYPnw4HBwMf6ehvv1oZ2cHDw8PKBQKLFy4EGfOnOnGqBkz3Y0bNxATE4O6ujpUVVVpnc/BwcFobm7WWadjPZFIhHHjxlkhestraWnBhg0bEBISAldXV3h5eWHy5MlQqVRdzjaKiYkx+Bm+YsUKZGdnCxW29VAH2dnZpKdYcA8fPqS33nqL7O3tadGiRXT27FlqbGyku3fv0qlTp+jll18mAASACgoKtNZVKBTk7+//WNu3RBumtn327FlNnyZPntxpG1VVVeTi4kIAKCkpSZA49VHHGBsbqymrqamhv//97+Tl5UVisZiOHj0qeBz69mF9fT0NGzaMpkyZIvj2O7p27RpNmzaNxowZQ25ubmRvb99p/Y77sbW1lcrLy2nfvn0UGRlJAGjevHl079697ghfBwDKzs62yrb7Emt9vj6us2fPUv/+/enTTz/VKi8oKNB8hiUnJxtcPz8/nzw9PYUOs9s0NDRQWFgYjRkzhn744QdqbGykGzduUHx8PAGg8+fPG1z3888/1+yz9PR0neXXrl2joKAgWrVqlZBd+H/t3XlYFFe6P/BvI3TTNNAsKtugIkbNNdp60esSEIGE1iiixBYz6CTj6Bg3hqsYd+NETaLXJz6ZxIzb8BjXgOZKRKPRGL33KjiiEXDfSMZRFhGl2ZHl/f3hr2tsuoHulqJZ3s/z8EefOlX1cmrpt6vOqRJFI/t3Uqu5srFy5Ups2LABX375Jb744gsMHDgQcrkcLi4uGDJkCP72t79h8eLF1g6z2cnlcnTv3h3Hjh3DxYsXG6y3adMm+Pr6tmBkDVMqlZg4cSI+++wzVFdXIy4uzipxEBHq6upQV1fX4uteuXIlRowYgUuXLsHJycns+Tt16gQPDw9ERkbip59+wgcffICdO3finXfe4Wcw4PnVoMDAwA67/takuLgYERERePvttzFv3jyD6TKZDO7u7ti6dSv2799vhQhb3qJFi5CVlYUTJ05g5MiRkMvl6NatG3bu3AmZTNbgfDk5OYiLi8O0adMarOPv749Dhw5h3bp17epJs60i2bhx4wY+/fRTBAQE4P3332+w3pIlS2Bvb9+CkYnPxsYGS5YsAYAGb4sUFRXhr3/9a6tLtkJCQgAA165dQ1FRUYuv38nJCffu3cP333/f4uv+29/+hiVLljR6+8Qcn376KYYOHYrDhw/jm2++aZZlMtYcNmzYgLy8PKxatcrodHt7e+zduxc2NjaYNWsWbt++3cIRtqz8/Hxs27YNMTEx8PDw0JumUChQWVmJ1157zei8M2fOhEajQXh4eKPrUKlUmDRpEhYuXIiamppmi92aWkWysW3bNtTV1UGj0TRaz8XFBRUVFe3mnp/O73//e/j4+ODw4cPIysoymP6Xv/wFb731Fvz9/a0QXcNe/AUukUisGEnLk8vlzbo8iUQi/Gr86quvmnXZjFmKiLBjxw4MHToU3t7eDdZTq9VYsWIFSkpKoNFojPbfaC8OHz6M2tpas698JSQk4Nq1a9i4caNJ9SdOnIgHDx7g6NGjloTZ6rSKZON///d/ATzP5ppTYWEhFixYAH9/f0ilUri6umLMmDE4ffp0g/PcvHkTY8eOhVKphIODA0JCQnDu3Dm9OjU1NUhMTMSbb74JT09PyOVy9O/fH59//rlFl/RlMhkWLVoEIsK6dev0ppWWluKLL77AsmXLGpzf1HgCAwP1OmpNnToVAPDGG2/olZt6leLMmTMAgH79+kGpVAIwr80t2T46ycnJejHrTm71y3/99VdER0fDxcUF7u7uGDduHO7du2ewvJs3b2LChAnCdv+P//gPHDlyRK9tZsyYYVK7WEp38jp//jyqq6tFXVdzMGX7rV27Vmi/F0/Ox48fF8o7d+4slOs6BJeVleHcuXNCHd0VpPodhtPT0xEWFgYnJyejx2tzr7+jyczMRH5+vknn5g8//BDh4eHIysrC/PnzTVq+KfuQpcd0QUEBYmNj0aNHD0ilUnTp0gVRUVHIyMgwvQGM+PnnnwEArq6uWLhwIXx9fSGVStG9e3fExsbiyZMnBvM8ePAACxcuREJCgsm3XQcOHAgA+OGHH14q3lbDjA4eovHy8iIA9Pe//92i+Y11HszNzSU/Pz/y8PCglJQU0mq1dOvWLYqKiiKJRELbt283WIZSqaSQkBA6e/YslZSUUHp6Og0YMICkUimdOXNGqJuSkkIA6OOPP6YnT55QQUEB/eUvfyEbGxuKj483KT6i552uFAoFERGVl5eTh4cH2djY0PXr14U6n376KU2ePJmIiP7v//7PaAdRc+LJyMgghUJBKpWKSktLiYiosrKShg4dSvv37zcaI+p1ENVqtUY7iJrT5pZsH2NtGBkZSQCooqLCaHlkZCSlpqZSaWkpnTx5kuRyOQ0ZMkSv7p07d8jFxYV8fHzoxIkTVFJSQlevXqU33niDunTpQjKZzGC9L/Lx8TG7g6gxFRUVQsexnJycRpfX3GBmB1Fzt59CoaDXX3/dYDkBAQFGOw42VF9HpVKRQqGg4cOHC9u3oeNVjPWHhISQm5sbpaWlNVjHmLbWQXT37t3CucWY9PR0UiqVwueCggLy9fUlALRnzx6h3FgHUXP3IXOO6ZycHOrevTt5eHjQ0aNHhWM6ODiY7O3tKTU11eI20cXh6elJMTExdO/ePXr69Cl9/fXXpFAoqHfv3lRUVKQ3j1qtpjlz5gifde1qrIOojlarJQAUFBRkcawtrbEOoq0i2fD09Gw02VCpVMJJ2NgJ29gX0XvvvUcADL5AKysrydvbm+RyOeXl5Rmso/7JIysriwCQSqUSylJSUmjUqFEGcU6dOpXs7OxIq9U2GR+RfrJBRLR+/XoCQFOnTiUiorKyMvLw8KDMzEwiajzZMCeepKQkAkBRUVFUV1dH7777Li1btsxgfl2ML7Y9AJJIJOTu7k7jx4+nCxcuCHXNaXNLto8lyUZKSopeua63eEFBgVCm0WgIAB08eFCv7qNHj8jBwaHFko3y8vI2k2yYu/3ESDYA0OXLl/XKjR2vYqw/ODiYXF1dzf7SamvJxoYNGwgAbd682ej0+skG0fPEws7OjhQKBd24cUMoq9/O5u5D5hzT7777LgGgvXv36tXNzc0lmUxGAQEBJraAIbVaTQDIz8+Pqqur9aatXbuWANDKlSuFsm3btlHPnj2FH3dEpiUbREQSiYR69eplcawtrdWPRvHx8QHwfEy2MRkZGSAis57pcOjQIQDA2LFj9cplMhnCwsJQUVFhcHnK3t4eQ4cO1Svr378/vL29kZmZidzcXADAuHHjjF7qV6lUqK6uxrVr10yO80Vz5syBu7s79u/fj7t372Lr1q0YNmwYBgwY0Oh85saj0WiwfPly/Pd//zcCAwNRWFiINWvWNLqOyMhIEJEwAuTx48f47rvvMGTIEKGOOW1uyfaxxIvxARBG9OTk5Ahlx48fB/D8vvOLunTpgr59+750DKbS7V92dnZ6l/Zbo5bafo1RKBTCpWYdY8erGM6cOYMnT55g+PDhoq2jNdDdnrSzszN5nmHDhmHjxo0oKyuDRqNBRUWF0XqW7kOmHNPJycmwsbHBuHHj9Op6enqiX79+uHTpEh48eGDy//QihUIB4Pnt5/q31yIiIgD869bH/fv3sWjRIiQkJAjzmcPW1rbB9mtrWkWyMXLkSAD/uhf2sqqqqqDVamFvb2/0/piuB3FeXp5eubu7u9GOjl27dgUAPHr0CACg1WqxatUq9O/fH66ursK9xEWLFgEAysvLLYrb0dERcXFxqK2txYcffoiNGzdixYoVTc5nSTxr1qzB0KFDkZqaCo1GAxubl9sVzGlzS7ePJXR9SXSkUikACH1ZqqqqUFJSAnt7ezg6OhrM7+rq+tIxmOrs2bMAgOHDh5t1cm9pLbn9GuPi4mK0vP7xyiynG/1nbh+i2NhYREdH4+rVq0aHy77MPmTKMa3ValFXVwelUmnwUDHd98ydO3fM+p90evToAeD590V9un2voKAAAJCSkgKtVotRo0bpxaAb+rpy5Uqh7O7duwbLq6mpafbO6NbSKpKNmTNnwsbGBt98802zPGNAJpNBqVSisrISJSUlBtPz8/MBPM9yX6TVao0uT3fS0u1IERERWLNmDWbOnInbt2+jrq4ORIRNmzYBwEv9D/Pnz4dSqcS+ffugUqlMGnljSTxnzpyBVqtF//79MWfOHGRmZlocM2Bem1u6fcQgk8ng5OSEyspKlJaWGkxvqS+suro6bN68GQAwd+7cFlmnpSzZfjY2Nnj27JlB3YY6I5syuqmwsNDovl3/eBVr/R2Bl5cXgIbPjY3ZsWMH+vTpg4SEBOzevVtvmpjnAJlMBhcXF9ja2qK6ulq4Ilv/Tzd031y6jsbGrpzp9j1dsjR37lyj69a1x5o1a4SyXr166S2ruLgYRCRsg7auVSQbr776KpYsWYJr165hw4YNDdarra01eZkTJ04EAINhQ1VVVTh16hTkcrnBZfPS0lKDL90rV64gJycHKpUKXl5eqK2txblz5+Dp6YnY2Fh06dJFODE1x+UupVKJBQsWQKlUmnRVw5J4fvnlF/zhD3/At99+i8OHD0MulyMyMlLIxi1lTptbsn3EMmbMGAD/up2ik5eX12LPDFi6dCkuXLiAiRMnNjkEvDUwd/t5eXnh4cOHenXz8vJw//59o8t3cHDQSw769OmDbdu26dWprKw0uLVa/3gVc/0dge55EZbccnB0dMS3334LhUJhdDi3mOeAqKgo1NTUGIwkBID169ejW7duFj+/4q233oKPjw+OHz9uMMQ3JSUFADBhwgSLlv0i3f7a0DM72hwzOniIqra2lhYtWkQSiYSmT59OFy9epLKyMiovL6esrCxat24deXh4UKdOnQw61ZgyGqW4uFivp/O2bdsMlqFQKCgwMJDOnz/faO/20NBQAkAbNmyggoICKi8vp59++om6detGAAwe321qB9GmNNRB1Jx4SkpKaMCAAfTdd98JZWfOnCE7OzsaOXIkPXv2zCBGNNGxUcecNrdk+1jSQbR++eLFiw06Ft69e5fc3Nz0RqNcuXKFRo8eTd27dxelg2htbS3l5+dTcnKysP2mT59O5eXljS5HLHjJ0ShNbb958+YRAPriiy+opKSE7t69S5MnTyYfHx+jHTRHjx5NSqWS7t+/T6mpqWRra6s3Sks3eiwsLMyk0SjNvf6OMhqlrq6Ounbt2mBnWWMdROvbs2cPAWhyNEpT+5A5x3R+fj75+/tTz5496fvvv6eioiIqLCykLVu2kIODg8G+HhMTQwAoOzu7yTYhIjp27BjZ2tpSZGQk3b59m54+fUq7du0ihUJBQ4cObfI4NqWD6L59+wgAHTp0yKSYWoNWPxrlRZcuXaLp06eTv78/yeVykkql5OnpSaGhobR27Vq9neG//uu/DEZKLF++XJj++PFjiouLIz8/P7KzsyOlUklqtZpOnTpldBk+Pj504cIFCgkJIUdHR5LL5RQcHExnz57Vi7GgoIBmzZpFvr6+ZGdnRx4eHvTee+/RkiVLhGUFBAQ0Gp9CodArV6vVjbZL/eXoTpzmxDN37ly9+a9cuUIFBQUGy9UdAPVjBEB9+vRpNE5T2tzS7fNiGx46dMigPCYmhtLS0hps8/rlL75T5datWzRhwgRydnYmBwcHGjFiBP3P//wPjRo1ihwcHAxi1w03NvZnbNhn/ToSiYSUSiX179+fZs+eTZcuXWq0XcVmbrJBZN62LioqohkzZpCXlxfJ5XIKDAyk9PR0CggIENpk8eLFQv2bN29SUFAQKRQK8vX1NRgNoUs+r1+/Tmq1mpycnBo8XsVYf1BQUIcYjUJEtGzZMrK1taWHDx8KZcbOG42N8Jg9e7bRpM6UfcjSY7qwsJAWLFhAPXv2JDs7O+rSpQuFh4cbfZdTuHQI1gAAIABJREFUaGgoOTo6Uk1NjcntkpqaSmq1mpRKJUmlUurbty+tXr260URj1qxZRs8Zxs7/Go2GfHx8DH4AtmZtKtlgrDXp06cPdevWzdphiM6SZMOaxHxxopja4vm1qKiIfHx8Gn3RWlv29OlTksvlNGPGDGuHIsjIyCCJRGL02UetWasf+sqYNeXl5cHNzc2gx/2vv/6Ke/fuITQ01EqRMWZ9SqUSKSkpOHjwoNCJub0gIsTGxsLZ2bnJ4f8tJTs7G1FRUVi6dCmmTJli7XCaDScbjAF4+vQpZs2ahX/+858oLy/HhQsXEB0dDWdnZ6xcudLa4TFmVYMGDcLFixdx7NgxFBcXWzucZpOfn4/s7GycOnWqRUa/mWLr1q1Yt26dwasr2jpONliH5+npiR9//BFFRUUYOXIkXF1dMX78eLzyyiu4cOECevbsae0Q2f+ne3dJZmYmHj58CIlEYtKoLfbyevTogSNHjsDZ2dnaoTQbT09PnD17Fv369bN2KIL169e3qysaOh3z7UKM1RMWFoawsDBrh8GaEB8fj/j4eGuHwRgzE1/ZYIwxxpioONlgjDHGmKg42WCMMcaYqDjZYIwxxpioGuwg2hbez8AYaz6bNm3CgQMHrB1Gu6Z7xwifX1l71Ng7dCRE+q9NTEtLw2effSZ6UIyxtic/Px9Xr17lkTuMsQYZ+dFywCDZYIyxhiQlJSE6Otroq90ZY6wBB7jPBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFyQZjjDHGRGVr7QAYY61TTk4Oxo0bh+rqaqGsvLwcSqUS/fv316s7aNAg7Nq1q6VDZIy1EZxsMMaM8vb2xrNnz3Dt2jWDaVqtVu/zlClTWiosxlgbxLdRGGMN+t3vfgdb28Z/k0gkEvz2t79toYgYY20RJxuMsQa98847qK2tbXC6RCJBQEAA/Pz8WjAqxlhbw8kGY6xBvr6+GDZsGGxsjJ8qOnXqhN/97nctHBVjrK3hZIMx1qhp06ZBIpEYnVZXV4fJkye3cESMsbaGkw3GWKM0Go3R8k6dOmHUqFHw8PBo4YgYY20NJxuMsUZ17twZYWFh6NSpk8G0adOmWSEixlhbw8kGY6xJU6dOBRHpldnY2GDixIlWiogx1pZwssEYa9KECRNgZ2cnfLa1tcXYsWOhVCqtGBVjrK3gZIMx1iQnJydEREQICUdtbS2mTp1q5agYY20FJxuMMZPExMSgpqYGACCXy/HWW29ZOSLGWFvByQZjzCRjxoyBQqEAAEyaNAlyudzKETHG2gp+N0ob9+DBA6Smplo7DNZBDBkyBKdPn4avry+SkpKsHQ7rIPhZLm2fhOp3MWdtSlJSEqKjo60dBmOMiYa/ptq8A3xlo53gg9H6dA+/OnDggJUjEU9dXR3Wr1+PpUuXWjUOiUSCxMRE/sXbzvGPqfaD+2wwxkxmY2ODRYsWWTsMxlgbw8kGY8wsTb1ynjHG6uNkgzHGGGOi4mSDMcYYY6LiZIMxxhhjouJkgwEAvvnmG0gkEkgkEtjb21s7HNE9ffoUW7ZsQWhoKNzc3CCXy/HKK68gJiYGmZmZ1g6Piegf//gHxo8fj+LiYjx+/FjY7yUSCQYNGoTKykqDeerXk0gkGDx4sBWib37V1dXYtGkTAgIC4OTkhK5du2LMmDFISUlpcpTb+PHjIZFIsHbtWoNpS5YsQWJiolhhszaGkw0GAJgyZQqICGFhYdYOpUUsWrQI8+fPR2RkJK5fv47CwkIkJCQgIyMDAQEBSE5Otmp8paWleOWVVzBu3DirxtHeZGRkYPDgwQgPD4ezszM6d+4MIkJ6erowPS4uzmA+Xb20tDS4u7uDiHDx4sWWDr/ZlZWVITQ0FDt37sSmTZvw6NEjXLx4EY6Ojhg/fjyuXbvW4Ly7du1CSkpKg9NnzpyJpUuXYuXKlWKEztoYTjZYhzV9+nT86U9/gqenJxwcHBAUFIR9+/ahtrYWH3zwgVVjIyLU1dWhrq7OqnGYwtHREYGBgdYOo0nFxcWIiIjA22+/jXnz5hlMl8lkcHd3x9atW7F//34rRNjyFi1ahKysLJw4cQIjR46EXC5Ht27dsHPnTshksgbny8nJQVxcHKZNm9ZgHX9/fxw6dAjr1q3jp80yTjZYx7Rjxw5s3brVoFylUkEul+PevXtWfVCak5MT7t27h++//95qMbQ3GzZsQF5eHlatWmV0ur29Pfbu3QsbGxvMmjULt2/fbuEIW1Z+fj62bduGmJgYeHh46E1TKBSorKzEa6+9ZnTemTNnQqPRIDw8vNF1qFQqTJo0CQsXLhRe4sc6Jk42GHtBWVkZKioq8Nprr0EikVg7HNZMiAg7duzA0KFD4e3t3WA9tVqNFStWoKSkBBqNxmj/jfbi8OHDqK2tNfuqVEJCAq5du4aNGzeaVH/ixIl48OABjh49akmYrJ3gZKODunnzJiZMmAClUgmFQoGgoCCcPXu2wfoFBQWIjY1Fjx49IJVK0aVLF0RFRSEjI0Ook5ycrNeB7tdff0V0dDRcXFzg7u6OcePG4d69e3rLraqqwqpVq9C3b184ODjAzc0NERERwonQ3Bhelu5R48uXL2+2ZZqrfjvqvvDMbd+NGzcKdX/zm98gPT0dYWFhcHJygoODA0JCQnDu3Dmh/tq1a4X6L34BHT9+XCjv3LmzwfLLyspw7tw5oU5rfOhXZmYm8vPzoVKpmqz74YcfIjw8HFlZWZg/f75Jyy8sLMSCBQvg7+8PqVQKV1dXjBkzBqdPnxbqWHJ8AOLt9z///DMAwNXVFQsXLoSvry+kUim6d++O2NhYPHnyxGCeBw8eYOHChUhISICTk5NJ6xk4cCAA4IcffnipeFkbR6xNS0xMJHM34507d8jFxYV8fHzoxIkTVFJSQllZWRQeHk49evQgmUymVz8nJ4e6d+9OHh4edPToUSopKaGrV69ScHAw2dvbU2pqql79yMhIAkCRkZGUmppKpaWldPLkSZLL5TRkyBC9ujNmzCClUkknTpyg8vJyysvLo/j4eAJAp0+ftjgGS+Tl5ZGHhwfNmDHDovknTZpEkyZNeuk4dHTtWFFRYbTclPYlIlKpVKRQKGj48OFC/fT0dBowYABJpVI6c+aMXn2FQkGvv/66wXICAgLI3d3doLyh+johISHk5uZGaWlppv7rTQJAiYmJJtffvXs3AaCPP/7Y6PT09HRSKpXC54KCAvL19SUAtGfPHqE8LS3NoA1yc3PJz8+PPDw8KCUlhbRaLd26dYuioqJIIpHQ9u3b9eqbs/3E3O91cXh6elJMTAzdu3ePnj59Sl9//TUpFArq3bs3FRUV6c2jVqtpzpw5wmddu65Zs6bB9Wi1WgJAQUFBZsdoyfmNtUpJvBXbOEsORo1GQwDo4MGDeuUPHz4kmUxmkGy8++67BID27t2rV56bm0symYwCAgL0ynUnsZSUFL3ySZMmEQAqKCgQyvz8/GjEiBEGMfbu3Vsv2TA3BnM9fvyYBg4cSNHR0VRTU2PRMlo62TClfYmeJxsA6PLly3rlWVlZBIBUKpVeeXMnG8HBweTq6tosCaGOucnGhg0bCABt3rzZ6PT6yQbR88TCzs6OFAoF3bhxQyir3wbvvfceAaD9+/frlVdWVpK3tzfJ5XLKy8sTys3ZfmLu92q1mgCQn58fVVdX601bu3YtAaCVK1cKZdu2baOePXtSaWmpUGZKskFEJJFIqFevXmbHyMlGu5HEt1E6oOPHjwN4fn/6Rd7e3ujdu7dB/eTkZNjY2BgMw/T09ES/fv1w6dIlPHjwwGC+IUOG6H329fUF8Lwnu87o0aORmpqKP/7xjzh//rxw6+TWrVsYNWrUS8dgirKyMqjVavzbv/0b9u7di06dOlm0nJZmSvvqKBQK4XK2Tv/+/eHt7Y3MzEzk5uaKFueZM2fw5MkTDB8+XLR1NEV3K8rOzs7keYYNG4aNGzeirKwMGo0GFRUVRusdOnQIADB27Fi9cplMhrCwMFRUVBi9hWDK9hNzv1coFACAN954w+DWV0REBIB/3fq4f/8+Fi1ahISEBGE+c9ja2jbYfqxj4GSjg6mqqkJJSQns7e3h6OhoML1r164G9bVaLerq6qBUKg0ebKS773vnzh2DZSmVSr3PUqkUAPSGc27evBm7du1CdnY2wsLC4OzsjNGjRwsn8JeNoSk1NTXQaDTw8fHB119/3WYSDcC09tVxcXExugzd9n706FEzR9e66B5UV11dbdZ8sbGxiI6OxtWrV40Ol9Xtm/b29kb7MOhGeeTl5RlMa2r7ibnfA0CPHj0AAO7u7gbTdPtFQUEBACAlJQVarRajRo3Si0E39HXlypVC2d27dw2WV1NTA7lcblGcrH3gZKODkclkcHJyQmVlJUpLSw2m1+8UJpPJ4OLiAltbW1RXV4OIjP6FhIRYFI/uhPXjjz+iqKgIycnJICJERUXhs88+Ez2GWbNmoaqqCklJSXq/7nr16oXz589b9D+1RoWFhUaH8uqSjBeTTBsbGzx79sygblFRkdFlt4VRO15eXgAArVZr9rw7duxAnz59kJCQgN27d+tNk8lkUCqVqKysRElJicG8+fn5AJ5fiTCX2MeerhOwsatauv1ClyzNnTvX6Lp17bFmzRqhrFevXnrLKi4uBhEJ24B1TJxsdEBjxowB8K/bKTqPHz/GrVu3DOpHRUWhpqZGb+SCzvr169GtWzeLx9C7uLjg5s2bAJ5f4n7zzTeFXvsvDpUTI4bVq1fj2rVr+O677xp9gFF7UFlZKTwlU+fKlSvIycmBSqXS+yLw8vLCw4cP9erm5eXh/v37Rpft4OCgl5z06dMH27Zta8boX57ueRGW3HJwdHTEt99+C4VCga+++spg+sSJEwHAYGhnVVUVTp06BblcbnDL0lRiHntvvfUWfHx8cPz4cYMhvrong06YMMGiZb9Ity819MwO1jFwstEBffzxx3Bzc0NcXBxOnjyJ0tJSXL9+HVOnTjV6a+WTTz6Bv78/pk+fjmPHjkGr1eLJkyfYunUrPvroI2zcuPGlhju+//77yMrKQlVVFR49eoQNGzaAiBAaGipaDDt37sSf//xn/P3vf4eTk5PBJWpjQxDbMqVSiWXLliEtLQ1lZWW4ePEipk6dCqlUis8//1yvbnh4OHJycvDll1+itLQU9+7dw5/+9CeDW2w6//7v/47bt2/jn//8J9LS0pCdnY2goCBhemhoKNzd3a16pUilUqFr164Wv/emX79+Rh8CBzzfN/38/BAXF4cjR46gpKQEt2/fxm9/+1vk5ubi888/N3holqnM3e+nTp0KiUSCX375pclly2Qy7NixA4WFhZgyZQru3LmDoqIi7N69G5988gmGDh2K2NhYi+J+kW6IblMPAGPtXIv0Q2WisbS39q1bt2jChAnk7OwsDLk7cuQIhYWFEQACQH/4wx+E+oWFhbRgwQLq2bMn2dnZUZcuXSg8PJxOnjwp1ElLSxPm1f0tX76ciMigfOzYsURElJGRQbNmzaJXX32VHBwcyM3NjYYNG0bbt2+nuro6vZhNicFUY8eONYip/p+5QzWbazTKoUOHDGKJiYmxqH2Jno9G8fHxoevXr5NarSYnJyeSy+UUHBxMZ8+eNVh/UVERzZgxg7y8vEgul1NgYCClp6dTQECAsPzFixcL9W/evElBQUGkUCjI19fXYMRHUFCQ1UejEBEtW7aMbG1t6eHDh0JZQUGBQds1NsJj9uzZRkfkPH78mOLi4sjPz4/s7OxIqVSSWq2mU6dOCXUs3X7m7PehoaHk6Oho1oiq1NRUUqvVpFQqSSqVUt++fWn16tVUXl7e4DyzZs0yesyo1WqDuhqNhnx8fOjZs2cmx6TDo1HajSQJkRWfycxeWlJSEqKjo636aG32nEajAfCvB4O1FgMHDsTjx48tHrXQGkkkEiQmJmLy5Mkmz6PVatGvXz+MGzcOW7ZsETE66ygqKoK3tzdiYmKwfft2a4cD4PnD1AYNGoR9+/ZhypQpZs/P57d24wDfRmGMdQhKpRIpKSk4ePAgNm/ebO1wmhURITY2Fs7OzlizZo21wwEAZGdnIyoqCkuXLrUo0WDtCycbjLEOY9CgQbh48SKOHTuG4uJia4fTbPLz85GdnY1Tp05ZNPJFDFu3bsW6deuwbt06a4fCWgFONli7Ur+jp7G/1atXWzvMFqF7d0lmZiYePnwIiUSCFStWWDssq+vRoweOHDkCZ2dna4fSbDw9PXH27Fn069fP2qEI1q9fz1c0mKD1vTGJsZfA93b/JT4+HvHx8dYOgzHG+MoGY4wxxsTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFHUTbCd0DpZj16B7HzduiZWzatKnVPUCNNa/29CC6jo6vbDDGGGNMVHxlo53gX3jW11ofV94eSSQS/Od//qdZjytnbY/uceWs7eMrG4wxxhgTFScbjDHGGBMVJxuMMcYYExUnG4wxxhgTFScbzChHR0eDF5jZ2NjA1dUVKpUKc+bMwaVLl6wdJmPN5h//+AfGjx+P4uJiPH78WG/fHzRoECorKw3mqV9PIpFg8ODBVoi++RARzp07h7lz56J3796QyWTo2rUrAgMDsWfPHoP3Dy1ZsgSJiYlWipa1FZxsMKNKS0tx+fJlAEBkZCSICNXV1bh58yY++ugj3Lx5E4MHD8bvf/97lJeXWzlaxl5ORkYGBg8ejPDwcDg7O6Nz584gIqSnpwvT4+LiDObT1UtLS4O7uzuICBcvXmzp8JvVrVu3EBgYiNu3b+PgwYPQarU4f/48unXrhmnTpmHRokV69WfOnImlS5di5cqVVoqYtQWcbDCTderUCR4eHoiMjMRPP/2EDz74ADt37sQ777zDb1ttpRwdHREYGNhh12+K4uJiRERE4O2338a8efMMpstkMri7u2Pr1q3Yv3+/FSJseba2tkhKSsKAAQNgb2+Pnj17YufOnXB3d8eXX36Jqqoqoa6/vz8OHTqEdevWISkpyYpRs9aMkw1msU8//RRDhw7F4cOH8c0331g7HMYssmHDBuTl5WHVqlVGp9vb22Pv3r2wsbHBrFmzcPv27RaOsGX17dsX1dXVcHV11SuXSqXw9fVFVVWVwS0llUqFSZMmYeHChaipqWnJcFkbwckGs5hEIhF+CX711VdWjoYx8xERduzYgaFDh8Lb27vBemq1GitWrEBJSQk0Go3R/hvtXVFREe7cuYNBgwZBqVQaTJ84cSIePHiAo0ePWiE61tpxssFeiu4S+fnz51FdXS2UFxQUIDY2Fj169IBUKkWXLl0QFRWFjIwMoU5ycrJex7pff/0V0dHRcHFxgbu7O8aNG4d79+7pra+qqgqrVq1C37594eDgADc3N0RERODw4cOora3Vq2tKDK1BYWEhFixYAH9/f0ilUri6umLMmDE4ffq0UGft2rVCO714W+L48eNCeefOnYXyjRs3QiKRoKysDOfOnRPq2Nra6k2XSCT4zW9+g/T0dISFhcHJyQkODg4ICQnBuXPnRFt/a5GZmYn8/HyoVKom63744YcIDw9HVlYW5s+fb9LyTdm2lhwHQMvt38XFxTh37hzGjx8PT09P7Nq1y2i9gQMHAgB++OGHZl0/ayeItWmJiYkk1ma8fPkyAaDIyMgG61RUVBAAAkA5OTlERJSTk0Pdu3cnDw8POnr0KJWUlNDVq1cpODiY7O3tKTU1VW8ZkZGRwnpSU1OptLSUTp48SXK5nIYMGaJXd8aMGaRUKunEiRNUXl5OeXl5FB8fTwDo9OnTQj1zY2gOkyZNokmTJpk1T25uLvn5+ZGHhwelpKSQVqulW7duUVRUFEkkEtq+fbtefYVCQa+//rrBcgICAsjd3d2gvKH6OiqVihQKBQ0fPlxo+/T0dBowYABJpVI6c+aMqOsPCQkhNzc3SktLa7COMQAoMTHRrHmM2b17NwGgjz/+2Oj09PR0UiqVwueCggLy9fUlALRnzx6hPC0tzeD/N3fbmnMctNT+vWbNGuH4HjVqFGVlZTVYV6vVEgAKCgpqlnUTiXt+Yy0qibdiG2ftZKO8vNwg2Xj33XcJAO3du1evbm5uLslkMgoICNAr151kU1JS9MonTZpEAKigoEAo8/PzoxEjRhjE0bt3b71kw9wYmoMlycZ7771HAGj//v165ZWVleTt7U1yuZzy8vKEcjGSDQB0+fJlvfKsrCwCQCqVyqTlWbr+4OBgcnV1NfvLsbmSjQ0bNhAA2rx5s9Hp9ZMNoueJhZ2dHSkUCrpx44ZQVv//N3fbmnMctOT+XVVVRTdu3KD333+fOnXqRB999FGDdSUSCfXq1avZ1s3JRruRxLdR2EvJzc0FANjZ2QmX0ZOTk2FjY4Nx48bp1fX09ES/fv1w6dIlo6+OHjJkiN5nX19fAEBOTo5QNnr0aKSmpuKPf/wjzp8/L9w6uXXrFkaNGiXUszSGlnbo0CEAwNixY/XKZTIZwsLCUFFRIfplaYVCIVwC1+nfvz+8vb2RmZkpbGMxnDlzBk+ePMHw4cNFW0djdH0v7OzsTJ5n2LBh2LhxI8rKyqDRaFBRUWG0nqXb1pTjoCX3b6lUir59++Kvf/0rxo8fj1WrVuHHH380WtfW1rbB9mAdGycb7KWcPXsWADB8+HDY2dmhqqoKWq0WdXV1UCqVBg88+vnnnwEAd+7cMVhW/U5nUqkUAFBXVyeUbd68Gbt27UJ2djbCwsLg7OyM0aNHCyd2AC8VQ0vSxWlvbw8nJyeD6R4eHgCAvLw8UeNwcXExWt61a1cAwKNHj0RdvzXZ29sDgF5/I1PExsYiOjoaV69eNTpc9mW2bVPHgTX374iICADAkSNHjE6vqamBXC5v9vWyto+TDWaxuro6bN68GQAwd+5cAM9/tbm4uMDW1hbV1dUgIqN/ISEhFq1TIpFg2rRp+PHHH1FUVITk5GQQEaKiovDZZ5+1SAzNRSaTQalUorKyEiUlJQbT8/PzATz/tapjY2ODZ8+eGdQtKioyug6JRNJkHIWFhUafk6JLMnRJh1jrtyYvLy8AgFarNXveHTt2oE+fPkhISMDu3bv1plmybU1lzf1bJpMBAJ48eWIwrbi4GEQktCljL+Jkg1ls6dKluHDhAiZOnAiNRiOUR0VFoaamRm80g8769evRrVs3i8fiu7i44ObNmwCeX/p+8803hd78Lw65EzOG5jRx4kQAMBguWFVVhVOnTkEul0OtVgvlXl5eePjwoV7dvLw83L9/3+jyHRwc9JKDPn36YNu2bXp1KisrhSdl6ly5cgU5OTlQqVR6Xx5irN+aXnvtNQCw6JaDo6Mjvv32WygUCqNDv83dtuYQc/+Oj4/H1KlTjU47duwYAMNbPQCE/ULXpozpadEuIqzZtWQH0draWsrPz6fk5GQKDQ0lADR9+nQqLy/Xmy8/P5/8/f2pZ8+e9P3331NRUREVFhbSli1byMHBwaBjn65jXEVFhV754sWLDTovKpVKCg4OpszMTKqsrKT8/HxavXo1AaC1a9daHENzaI7RKMXFxXojFrZt26ZXf968eQSAvvjiCyopKaG7d+/S5MmTycfHx2gHzdGjR5NSqaT79+9Tamoq2dra0vXr14XpKpWKlEolhYWFmTQapbnXb+3RKHV1ddS1a9cGO7Ea6yBa3549ewhAk6NRmtq25hwH5u7fMTExBICys7ObbJOFCxeSRCKhP//5z/TLL79QZWUl/fLLL/TBBx8QAAoICDA45omI9u3bRwDo0KFDTa7DVNxBtN3g0ShtnVgHo0KhEEaZ6P4kEgkplUrq378/zZ49my5dutTg/IWFhbRgwQLq2bMn2dnZUZcuXSg8PJxOnjwp1ElLSzNYx/Lly4mIDMrHjh1LREQZGRk0a9YsevXVV8nBwYHc3Nxo2LBhtH37dqqrqzM7huZkSbJBRPT48WOKi4sjPz8/srOzI6VSSWq1mk6dOmVQt6ioiGbMmEFeXl4kl8spMDCQ0tPTKSAgQGirxYsXC/Vv3rxJQUFBpFAoyNfX12DUhUqlIh8fH7p+/Tqp1WpycnIiuVxOwcHBdPbsWdHXHxQUZNXRKEREy5YtI1tbW3r48KFQVlBQYLAPNjbCY/bs2UaTLVO2rSXHAZF5+3doaCg5OjpSTU1Nk+2h1Wppx44dpFarqUePHiSVSsnR0ZECAgLok08+MZpoEBFpNBry8fGhZ8+eNbkOU3Gy0W4kSYj4pRZtWVJSEqKjo/ndJK2A7lbSgQMHrByJ6QYOHIjHjx+3ipE55pBIJEhMTMTkyZNfellarRb9+vXDuHHjsGXLlmaIrnUpKiqCt7c3YmJisH37dlHWkZmZiUGDBmHfvn2YMmVKsy2Xz2/txgHus8EY69CUSiVSUlJw8OBBocNze0FEiI2NhbOzM9asWSPKOrKzsxEVFYWlS5c2a6LB2hdONhhjHd6gQYNw8eJFHDt2DMXFxdYOp9nk5+cjOzsbp06dsmjkiym2bt2KdevWYd26daIsn7UPnGww1gHp3l2SmZmJhw8fQiKRYMWKFdYOy6p69OiBI0eOwNnZ2dqhNBtPT0+cPXsW/fr1E20d69ev5ysarEmt661IjLEWER8fj/j4eGuHwRjrIPjKBmOMMcZExcnXL/ehAAAAgElEQVQGY4wxxkTFyQZjjDHGRMXJBmOMMcZExckGY4wxxkTFo1Haidb+ds2OhLdFy4iOjkZ0dLS1w2CMmYCTjTZuxIgRSExMtHYYjDHGWIP43SiMMcYYExO/G4Uxxhhj4uJkgzHGGGOi4mSDMcYYY6KyBXDA2kEwxhhjrN06//8A8qUqjsePQc8AAAAASUVORK5CYII=",
"text/plain": [
""
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"tf.keras.utils.plot_model(model, show_shapes=True)"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:39:12.385562Z",
"iopub.status.busy": "2024-08-16T07:39:12.384959Z",
"iopub.status.idle": "2024-08-16T07:40:39.331474Z",
"shell.execute_reply": "2024-08-16T07:40:39.330620Z"
},
"id": "QJgI1pow2YR9"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 1/3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/Unknown - 23s 23s/step - loss: 1.0808 - accuracy: 0.5312"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 8/Unknown - 23s 8ms/step - loss: 1.0767 - accuracy: 0.4121"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 17/Unknown - 23s 7ms/step - loss: 1.0590 - accuracy: 0.3943"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/Unknown - 23s 7ms/step - loss: 1.0421 - accuracy: 0.4050"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 33/Unknown - 23s 7ms/step - loss: 1.0340 - accuracy: 0.4029"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 44/Unknown - 23s 6ms/step - loss: 1.0170 - accuracy: 0.4215"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 54/Unknown - 23s 6ms/step - loss: 1.0054 - accuracy: 0.4340"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 65/Unknown - 23s 6ms/step - loss: 0.9876 - accuracy: 0.4620"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 75/Unknown - 23s 6ms/step - loss: 0.9712 - accuracy: 0.4777"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 86/Unknown - 23s 6ms/step - loss: 0.9528 - accuracy: 0.4958"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/Unknown - 23s 5ms/step - loss: 0.9315 - accuracy: 0.5129"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 109/Unknown - 23s 5ms/step - loss: 0.9154 - accuracy: 0.5278"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 121/Unknown - 23s 5ms/step - loss: 0.8988 - accuracy: 0.5384"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 133/Unknown - 23s 5ms/step - loss: 0.8867 - accuracy: 0.5471"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 145/Unknown - 23s 5ms/step - loss: 0.8735 - accuracy: 0.5554"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 157/Unknown - 23s 5ms/step - loss: 0.8633 - accuracy: 0.5638"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 169/Unknown - 23s 5ms/step - loss: 0.8517 - accuracy: 0.5734"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 181/Unknown - 24s 5ms/step - loss: 0.8391 - accuracy: 0.5836"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 193/Unknown - 24s 5ms/step - loss: 0.8263 - accuracy: 0.5917"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 205/Unknown - 24s 5ms/step - loss: 0.8157 - accuracy: 0.6005"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 217/Unknown - 24s 5ms/step - loss: 0.8039 - accuracy: 0.6088"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 229/Unknown - 24s 5ms/step - loss: 0.7947 - accuracy: 0.6143"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 241/Unknown - 24s 5ms/step - loss: 0.7860 - accuracy: 0.6205"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 253/Unknown - 24s 5ms/step - loss: 0.7770 - accuracy: 0.6266"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 265/Unknown - 24s 5ms/step - loss: 0.7673 - accuracy: 0.6321"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 278/Unknown - 24s 5ms/step - loss: 0.7581 - accuracy: 0.6373"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 290/Unknown - 24s 5ms/step - loss: 0.7483 - accuracy: 0.6430"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 302/Unknown - 24s 5ms/step - loss: 0.7405 - accuracy: 0.6479"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 314/Unknown - 24s 5ms/step - loss: 0.7324 - accuracy: 0.6532"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 326/Unknown - 24s 5ms/step - loss: 0.7238 - accuracy: 0.6582"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 339/Unknown - 24s 5ms/step - loss: 0.7146 - accuracy: 0.6632"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 351/Unknown - 24s 5ms/step - loss: 0.7071 - accuracy: 0.6677"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 363/Unknown - 24s 5ms/step - loss: 0.7010 - accuracy: 0.6715"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 375/Unknown - 24s 5ms/step - loss: 0.6953 - accuracy: 0.6750"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 387/Unknown - 24s 5ms/step - loss: 0.6890 - accuracy: 0.6787"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 399/Unknown - 24s 5ms/step - loss: 0.6832 - accuracy: 0.6818"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 411/Unknown - 24s 5ms/step - loss: 0.6769 - accuracy: 0.6853"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 423/Unknown - 25s 5ms/step - loss: 0.6724 - accuracy: 0.6879"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 436/Unknown - 25s 5ms/step - loss: 0.6665 - accuracy: 0.6910"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 449/Unknown - 25s 4ms/step - loss: 0.6603 - accuracy: 0.6940"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 461/Unknown - 25s 4ms/step - loss: 0.6557 - accuracy: 0.6961"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 473/Unknown - 25s 4ms/step - loss: 0.6520 - accuracy: 0.6979"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 485/Unknown - 25s 4ms/step - loss: 0.6475 - accuracy: 0.7006"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 497/Unknown - 25s 4ms/step - loss: 0.6431 - accuracy: 0.7031"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 509/Unknown - 25s 4ms/step - loss: 0.6386 - accuracy: 0.7055"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 522/Unknown - 25s 4ms/step - loss: 0.6329 - accuracy: 0.7089"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 535/Unknown - 25s 4ms/step - loss: 0.6281 - accuracy: 0.7117"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 547/Unknown - 25s 4ms/step - loss: 0.6242 - accuracy: 0.7142"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 559/Unknown - 25s 4ms/step - loss: 0.6212 - accuracy: 0.7161"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 571/Unknown - 25s 4ms/step - loss: 0.6176 - accuracy: 0.7178"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 583/Unknown - 25s 4ms/step - loss: 0.6153 - accuracy: 0.7191"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 596/Unknown - 25s 4ms/step - loss: 0.6114 - accuracy: 0.7210"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 608/Unknown - 25s 4ms/step - loss: 0.6080 - accuracy: 0.7228"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 620/Unknown - 25s 4ms/step - loss: 0.6049 - accuracy: 0.7246"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 632/Unknown - 25s 4ms/step - loss: 0.6020 - accuracy: 0.7262"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 644/Unknown - 25s 4ms/step - loss: 0.5995 - accuracy: 0.7277"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 656/Unknown - 26s 4ms/step - loss: 0.5974 - accuracy: 0.7288"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 668/Unknown - 26s 4ms/step - loss: 0.5942 - accuracy: 0.7303"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 680/Unknown - 26s 4ms/step - loss: 0.5910 - accuracy: 0.7319"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 692/Unknown - 26s 4ms/step - loss: 0.5874 - accuracy: 0.7336"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"697/697 [==============================] - 30s 10ms/step - loss: 0.5868 - accuracy: 0.7339 - val_loss: 0.4017 - val_accuracy: 0.8302\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 2/3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/697 [..............................] - ETA: 4:10:43 - loss: 0.5078 - accuracy: 0.7656"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/697 [..............................] - ETA: 2s - loss: 0.3763 - accuracy: 0.8462 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/697 [>.............................] - ETA: 2s - loss: 0.3716 - accuracy: 0.8500"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/697 [>.............................] - ETA: 2s - loss: 0.3800 - accuracy: 0.8476"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/697 [=>............................] - ETA: 2s - loss: 0.3745 - accuracy: 0.8457"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/697 [=>............................] - ETA: 2s - loss: 0.3731 - accuracy: 0.8463"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/697 [==>...........................] - ETA: 2s - loss: 0.3712 - accuracy: 0.8491"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 85/697 [==>...........................] - ETA: 2s - loss: 0.3705 - accuracy: 0.8493"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 97/697 [===>..........................] - ETA: 2s - loss: 0.3748 - accuracy: 0.8457"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"109/697 [===>..........................] - ETA: 2s - loss: 0.3756 - accuracy: 0.8472"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"121/697 [====>.........................] - ETA: 2s - loss: 0.3736 - accuracy: 0.8479"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"133/697 [====>.........................] - ETA: 2s - loss: 0.3718 - accuracy: 0.8490"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"145/697 [=====>........................] - ETA: 2s - loss: 0.3717 - accuracy: 0.8484"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"157/697 [=====>........................] - ETA: 2s - loss: 0.3719 - accuracy: 0.8477"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"169/697 [======>.......................] - ETA: 2s - loss: 0.3726 - accuracy: 0.8468"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"181/697 [======>.......................] - ETA: 2s - loss: 0.3708 - accuracy: 0.8472"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"193/697 [=======>......................] - ETA: 2s - loss: 0.3723 - accuracy: 0.8467"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"205/697 [=======>......................] - ETA: 2s - loss: 0.3708 - accuracy: 0.8479"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"217/697 [========>.....................] - ETA: 2s - loss: 0.3696 - accuracy: 0.8481"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"229/697 [========>.....................] - ETA: 2s - loss: 0.3677 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"241/697 [=========>....................] - ETA: 1s - loss: 0.3671 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"253/697 [=========>....................] - ETA: 1s - loss: 0.3672 - accuracy: 0.8501"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"265/697 [==========>...................] - ETA: 1s - loss: 0.3676 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"277/697 [==========>...................] - ETA: 1s - loss: 0.3665 - accuracy: 0.8491"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"289/697 [===========>..................] - ETA: 1s - loss: 0.3668 - accuracy: 0.8490"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"301/697 [===========>..................] - ETA: 1s - loss: 0.3677 - accuracy: 0.8483"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"313/697 [============>.................] - ETA: 1s - loss: 0.3675 - accuracy: 0.8482"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"325/697 [============>.................] - ETA: 1s - loss: 0.3682 - accuracy: 0.8483"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"337/697 [=============>................] - ETA: 1s - loss: 0.3685 - accuracy: 0.8480"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"349/697 [==============>...............] - ETA: 1s - loss: 0.3684 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"361/697 [==============>...............] - ETA: 1s - loss: 0.3680 - accuracy: 0.8483"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"373/697 [===============>..............] - ETA: 1s - loss: 0.3667 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"385/697 [===============>..............] - ETA: 1s - loss: 0.3668 - accuracy: 0.8480"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"397/697 [================>.............] - ETA: 1s - loss: 0.3661 - accuracy: 0.8486"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"409/697 [================>.............] - ETA: 1s - loss: 0.3666 - accuracy: 0.8481"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"421/697 [=================>............] - ETA: 1s - loss: 0.3668 - accuracy: 0.8481"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"433/697 [=================>............] - ETA: 1s - loss: 0.3665 - accuracy: 0.8479"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"445/697 [==================>...........] - ETA: 1s - loss: 0.3659 - accuracy: 0.8484"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"457/697 [==================>...........] - ETA: 1s - loss: 0.3673 - accuracy: 0.8477"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"469/697 [===================>..........] - ETA: 0s - loss: 0.3672 - accuracy: 0.8474"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"481/697 [===================>..........] - ETA: 0s - loss: 0.3674 - accuracy: 0.8475"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"493/697 [====================>.........] - ETA: 0s - loss: 0.3674 - accuracy: 0.8475"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"505/697 [====================>.........] - ETA: 0s - loss: 0.3672 - accuracy: 0.8476"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"517/697 [=====================>........] - ETA: 0s - loss: 0.3666 - accuracy: 0.8479"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"529/697 [=====================>........] - ETA: 0s - loss: 0.3671 - accuracy: 0.8477"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"541/697 [======================>.......] - ETA: 0s - loss: 0.3666 - accuracy: 0.8478"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"553/697 [======================>.......] - ETA: 0s - loss: 0.3660 - accuracy: 0.8482"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"565/697 [=======================>......] - ETA: 0s - loss: 0.3664 - accuracy: 0.8480"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"577/697 [=======================>......] - ETA: 0s - loss: 0.3656 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"589/697 [========================>.....] - ETA: 0s - loss: 0.3654 - accuracy: 0.8486"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"601/697 [========================>.....] - ETA: 0s - loss: 0.3647 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"613/697 [=========================>....] - ETA: 0s - loss: 0.3651 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"625/697 [=========================>....] - ETA: 0s - loss: 0.3656 - accuracy: 0.8487"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"637/697 [==========================>...] - ETA: 0s - loss: 0.3650 - accuracy: 0.8490"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"649/697 [==========================>...] - ETA: 0s - loss: 0.3646 - accuracy: 0.8491"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"661/697 [===========================>..] - ETA: 0s - loss: 0.3649 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"673/697 [===========================>..] - ETA: 0s - loss: 0.3645 - accuracy: 0.8488"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"685/697 [============================>.] - ETA: 0s - loss: 0.3641 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"697/697 [==============================] - ETA: 0s - loss: 0.3642 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"697/697 [==============================] - 28s 10ms/step - loss: 0.3642 - accuracy: 0.8489 - val_loss: 0.3574 - val_accuracy: 0.8472\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch 3/3\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/697 [..............................] - ETA: 4:17:33 - loss: 0.3495 - accuracy: 0.8438"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/697 [..............................] - ETA: 3s - loss: 0.2834 - accuracy: 0.8750 "
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/697 [>.............................] - ETA: 2s - loss: 0.2817 - accuracy: 0.8844"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 38/697 [>.............................] - ETA: 2s - loss: 0.2917 - accuracy: 0.8845"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 50/697 [=>............................] - ETA: 2s - loss: 0.2861 - accuracy: 0.8825"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 62/697 [=>............................] - ETA: 2s - loss: 0.2890 - accuracy: 0.8843"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 74/697 [==>...........................] - ETA: 2s - loss: 0.2927 - accuracy: 0.8847"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 86/697 [==>...........................] - ETA: 2s - loss: 0.2921 - accuracy: 0.8846"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 98/697 [===>..........................] - ETA: 2s - loss: 0.2901 - accuracy: 0.8850"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"111/697 [===>..........................] - ETA: 2s - loss: 0.2899 - accuracy: 0.8846"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"123/697 [====>.........................] - ETA: 2s - loss: 0.2876 - accuracy: 0.8855"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"135/697 [====>.........................] - ETA: 2s - loss: 0.2877 - accuracy: 0.8858"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"146/697 [=====>........................] - ETA: 2s - loss: 0.2885 - accuracy: 0.8850"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"158/697 [=====>........................] - ETA: 2s - loss: 0.2869 - accuracy: 0.8847"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"170/697 [======>.......................] - ETA: 2s - loss: 0.2887 - accuracy: 0.8832"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"182/697 [======>.......................] - ETA: 2s - loss: 0.2897 - accuracy: 0.8831"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"194/697 [=======>......................] - ETA: 2s - loss: 0.2910 - accuracy: 0.8823"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"207/697 [=======>......................] - ETA: 2s - loss: 0.2891 - accuracy: 0.8824"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"220/697 [========>.....................] - ETA: 2s - loss: 0.2890 - accuracy: 0.8829"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"232/697 [========>.....................] - ETA: 1s - loss: 0.2880 - accuracy: 0.8832"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"244/697 [=========>....................] - ETA: 1s - loss: 0.2893 - accuracy: 0.8822"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"256/697 [==========>...................] - ETA: 1s - loss: 0.2889 - accuracy: 0.8828"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"268/697 [==========>...................] - ETA: 1s - loss: 0.2879 - accuracy: 0.8831"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"280/697 [===========>..................] - ETA: 1s - loss: 0.2884 - accuracy: 0.8824"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"292/697 [===========>..................] - ETA: 1s - loss: 0.2888 - accuracy: 0.8814"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"304/697 [============>.................] - ETA: 1s - loss: 0.2897 - accuracy: 0.8812"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"316/697 [============>.................] - ETA: 1s - loss: 0.2909 - accuracy: 0.8812"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"328/697 [=============>................] - ETA: 1s - loss: 0.2908 - accuracy: 0.8810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"340/697 [=============>................] - ETA: 1s - loss: 0.2906 - accuracy: 0.8808"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"352/697 [==============>...............] - ETA: 1s - loss: 0.2915 - accuracy: 0.8804"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"364/697 [==============>...............] - ETA: 1s - loss: 0.2912 - accuracy: 0.8807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"376/697 [===============>..............] - ETA: 1s - loss: 0.2899 - accuracy: 0.8816"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"388/697 [===============>..............] - ETA: 1s - loss: 0.2901 - accuracy: 0.8818"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"401/697 [================>.............] - ETA: 1s - loss: 0.2897 - accuracy: 0.8821"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"413/697 [================>.............] - ETA: 1s - loss: 0.2893 - accuracy: 0.8823"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"425/697 [=================>............] - ETA: 1s - loss: 0.2908 - accuracy: 0.8814"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"437/697 [=================>............] - ETA: 1s - loss: 0.2910 - accuracy: 0.8817"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"449/697 [==================>...........] - ETA: 1s - loss: 0.2906 - accuracy: 0.8819"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"461/697 [==================>...........] - ETA: 1s - loss: 0.2915 - accuracy: 0.8815"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"473/697 [===================>..........] - ETA: 0s - loss: 0.2915 - accuracy: 0.8813"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"485/697 [===================>..........] - ETA: 0s - loss: 0.2905 - accuracy: 0.8817"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"497/697 [====================>.........] - ETA: 0s - loss: 0.2910 - accuracy: 0.8813"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"509/697 [====================>.........] - ETA: 0s - loss: 0.2920 - accuracy: 0.8805"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"521/697 [=====================>........] - ETA: 0s - loss: 0.2914 - accuracy: 0.8807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"533/697 [=====================>........] - ETA: 0s - loss: 0.2909 - accuracy: 0.8810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"545/697 [======================>.......] - ETA: 0s - loss: 0.2903 - accuracy: 0.8811"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"557/697 [======================>.......] - ETA: 0s - loss: 0.2901 - accuracy: 0.8811"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"570/697 [=======================>......] - ETA: 0s - loss: 0.2908 - accuracy: 0.8810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"582/697 [========================>.....] - ETA: 0s - loss: 0.2916 - accuracy: 0.8808"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"595/697 [========================>.....] - ETA: 0s - loss: 0.2908 - accuracy: 0.8810"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"608/697 [=========================>....] - ETA: 0s - loss: 0.2917 - accuracy: 0.8806"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"620/697 [=========================>....] - ETA: 0s - loss: 0.2910 - accuracy: 0.8807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"632/697 [==========================>...] - ETA: 0s - loss: 0.2918 - accuracy: 0.8806"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"644/697 [==========================>...] - ETA: 0s - loss: 0.2911 - accuracy: 0.8807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"656/697 [===========================>..] - ETA: 0s - loss: 0.2912 - accuracy: 0.8808"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"668/697 [===========================>..] - ETA: 0s - loss: 0.2917 - accuracy: 0.8807"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"680/697 [============================>.] - ETA: 0s - loss: 0.2909 - accuracy: 0.8811"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"692/697 [============================>.] - ETA: 0s - loss: 0.2912 - accuracy: 0.8808"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"697/697 [==============================] - 29s 9ms/step - loss: 0.2910 - accuracy: 0.8808 - val_loss: 0.3527 - val_accuracy: 0.8506\n"
]
}
],
"source": [
"history = model.fit(train_data, validation_data=validation_data, epochs=3)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:39.335650Z",
"iopub.status.busy": "2024-08-16T07:40:39.335104Z",
"iopub.status.idle": "2024-08-16T07:40:42.737281Z",
"shell.execute_reply": "2024-08-16T07:40:42.736418Z"
},
"id": "KTPCYf_Jh6TH"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/Unknown - 1s 1s/step - loss: 0.3171 - accuracy: 0.8906"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 3/Unknown - 1s 33ms/step - loss: 0.3394 - accuracy: 0.8438"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 5/Unknown - 1s 32ms/step - loss: 0.3616 - accuracy: 0.8406"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/Unknown - 1s 31ms/step - loss: 0.3426 - accuracy: 0.8549"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 9/Unknown - 1s 31ms/step - loss: 0.3073 - accuracy: 0.8767"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 11/Unknown - 1s 31ms/step - loss: 0.3027 - accuracy: 0.8764"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/Unknown - 2s 30ms/step - loss: 0.3126 - accuracy: 0.8678"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 15/Unknown - 2s 30ms/step - loss: 0.3169 - accuracy: 0.8656"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 17/Unknown - 2s 30ms/step - loss: 0.3212 - accuracy: 0.8649"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 19/Unknown - 2s 30ms/step - loss: 0.3274 - accuracy: 0.8651"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 21/Unknown - 2s 30ms/step - loss: 0.3376 - accuracy: 0.8616"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 23/Unknown - 2s 30ms/step - loss: 0.3418 - accuracy: 0.8560"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 25/Unknown - 2s 30ms/step - loss: 0.3435 - accuracy: 0.8550"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 27/Unknown - 2s 30ms/step - loss: 0.3505 - accuracy: 0.8513"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 29/Unknown - 2s 30ms/step - loss: 0.3523 - accuracy: 0.8491"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 31/Unknown - 2s 29ms/step - loss: 0.3538 - accuracy: 0.8503"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 33/Unknown - 2s 29ms/step - loss: 0.3568 - accuracy: 0.8485"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 35/Unknown - 2s 29ms/step - loss: 0.3621 - accuracy: 0.8473"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 37/Unknown - 2s 29ms/step - loss: 0.3627 - accuracy: 0.8459"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 39/Unknown - 2s 29ms/step - loss: 0.3605 - accuracy: 0.8478"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 41/Unknown - 2s 29ms/step - loss: 0.3591 - accuracy: 0.8464"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 43/Unknown - 2s 29ms/step - loss: 0.3546 - accuracy: 0.8492"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 45/Unknown - 2s 29ms/step - loss: 0.3549 - accuracy: 0.8490"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 47/Unknown - 2s 29ms/step - loss: 0.3567 - accuracy: 0.8497"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 49/Unknown - 3s 29ms/step - loss: 0.3570 - accuracy: 0.8492"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 51/Unknown - 3s 29ms/step - loss: 0.3519 - accuracy: 0.8514"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 53/Unknown - 3s 29ms/step - loss: 0.3558 - accuracy: 0.8494"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/Unknown - 3s 29ms/step - loss: 0.3581 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 57/Unknown - 3s 29ms/step - loss: 0.3550 - accuracy: 0.8506"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 59/Unknown - 3s 29ms/step - loss: 0.3553 - accuracy: 0.8506"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/Unknown - 3s 29ms/step - loss: 0.3557 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 63/Unknown - 3s 29ms/step - loss: 0.3583 - accuracy: 0.8480"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 65/Unknown - 3s 29ms/step - loss: 0.3569 - accuracy: 0.8490"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 67/Unknown - 3s 29ms/step - loss: 0.3563 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 69/Unknown - 3s 29ms/step - loss: 0.3558 - accuracy: 0.8503"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 71/Unknown - 3s 29ms/step - loss: 0.3569 - accuracy: 0.8497"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 73/Unknown - 3s 29ms/step - loss: 0.3555 - accuracy: 0.8495"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 75/Unknown - 3s 29ms/step - loss: 0.3537 - accuracy: 0.8506"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 77/Unknown - 3s 29ms/step - loss: 0.3540 - accuracy: 0.8504"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"79/79 [==============================] - 3s 29ms/step - loss: 0.3527 - accuracy: 0.8506\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loss: 0.35271939635276794\n",
"Accuracy: 85.06%\n"
]
}
],
"source": [
"metrics = model.evaluate(validation_data, return_dict=True)\n",
"\n",
"print(\"Loss: \", metrics['loss'])\n",
"print(\"Accuracy: {:2.2%}\".format(metrics['accuracy']))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "_knIsO-r4pHb"
},
"source": [
"### Export the model"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FEuMLJA_Xiwo"
},
"source": [
"To make the model capable of taking raw strings as input, pack both the text processor and the model into a `keras.Sequential`:"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:42.741240Z",
"iopub.status.busy": "2024-08-16T07:40:42.740696Z",
"iopub.status.idle": "2024-08-16T07:40:42.823780Z",
"shell.execute_reply": "2024-08-16T07:40:42.822946Z"
},
"id": "ZpFRX39rt6UL"
},
"outputs": [],
"source": [
"export_model = tf.keras.Sequential([\n",
" preprocess_text,\n",
" model\n",
"])"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:42.826973Z",
"iopub.status.busy": "2024-08-16T07:40:42.826726Z",
"iopub.status.idle": "2024-08-16T07:40:42.883733Z",
"shell.execute_reply": "2024-08-16T07:40:42.882923Z"
},
"id": "G-Cvd27y4qwt"
},
"outputs": [],
"source": [
"export_model.compile(\n",
" loss=losses.SparseCategoricalCrossentropy(from_logits=False),\n",
" optimizer='adam',\n",
" metrics=['accuracy'])"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "AmU7iV9vtnfY"
},
"source": [
"This model you can run directly on batches of strings:"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:42.886971Z",
"iopub.status.busy": "2024-08-16T07:40:42.886724Z",
"iopub.status.idle": "2024-08-16T07:40:42.897020Z",
"shell.execute_reply": "2024-08-16T07:40:42.896214Z"
},
"id": "UVwz4FADul8p"
},
"outputs": [
{
"data": {
"text/plain": [
"<_PrefetchDataset element_spec=(TensorSpec(shape=(None,), dtype=tf.string, name=None), TensorSpec(shape=(None,), dtype=tf.int64, name=None))>"
]
},
"execution_count": 58,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Create a test dataset of raw strings.\n",
"test_ds = all_labeled_data.take(VALIDATION_SIZE).batch(BATCH_SIZE)\n",
"test_ds = test_ds.cache().prefetch(tf.data.AUTOTUNE)\n",
"test_ds"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:42.900203Z",
"iopub.status.busy": "2024-08-16T07:40:42.899592Z",
"iopub.status.idle": "2024-08-16T07:40:48.500011Z",
"shell.execute_reply": "2024-08-16T07:40:48.499088Z"
},
"id": "Pyg0B4zsc-UD"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
" 1/Unknown - 5s 5s/step - loss: 1.2408 - accuracy: 0.8906"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 7/Unknown - 5s 9ms/step - loss: 1.0326 - accuracy: 0.8549"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 13/Unknown - 5s 9ms/step - loss: 0.7683 - accuracy: 0.8678"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 20/Unknown - 5s 8ms/step - loss: 0.9390 - accuracy: 0.8641"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 27/Unknown - 5s 8ms/step - loss: 0.9695 - accuracy: 0.8513"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 34/Unknown - 5s 8ms/step - loss: 1.0241 - accuracy: 0.8483"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 41/Unknown - 5s 8ms/step - loss: 1.0335 - accuracy: 0.8464"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 48/Unknown - 5s 8ms/step - loss: 1.0343 - accuracy: 0.8493"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 55/Unknown - 5s 8ms/step - loss: 1.0255 - accuracy: 0.8489"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 61/Unknown - 5s 8ms/step - loss: 1.0324 - accuracy: 0.8496"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 68/Unknown - 5s 8ms/step - loss: 1.0353 - accuracy: 0.8497"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
" 75/Unknown - 5s 8ms/step - loss: 1.0337 - accuracy: 0.8506"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"79/79 [==============================] - 5s 9ms/step - loss: 1.0300 - accuracy: 0.8506\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Loss: 1.0299931764602661\n",
"Accuracy: 85.06%\n"
]
}
],
"source": [
"loss, accuracy = export_model.evaluate(test_ds)\n",
"\n",
"print(\"Loss: \", loss)\n",
"print(\"Accuracy: {:2.2%}\".format(accuracy))"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "jenLg-ANtusp"
},
"source": [
"Use `saved_model.save` to export it.\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:40:48.503742Z",
"iopub.status.busy": "2024-08-16T07:40:48.503451Z",
"iopub.status.idle": "2024-08-16T07:41:00.344927Z",
"shell.execute_reply": "2024-08-16T07:41:00.344152Z"
},
"id": "RrxPxqXYwp5t"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"INFO:tensorflow:Assets written to: export.tf/assets\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"INFO:tensorflow:Assets written to: export.tf/assets\n"
]
}
],
"source": [
"tf.saved_model.save(export_model, 'export.tf')"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:00.352927Z",
"iopub.status.busy": "2024-08-16T07:41:00.352633Z",
"iopub.status.idle": "2024-08-16T07:41:03.744375Z",
"shell.execute_reply": "2024-08-16T07:41:03.743618Z"
},
"id": "wdpOqe2nxTDP"
},
"outputs": [],
"source": [
"loaded = tf.saved_model.load('export.tf')"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:03.748358Z",
"iopub.status.busy": "2024-08-16T07:41:03.748094Z",
"iopub.status.idle": "2024-08-16T07:41:03.821474Z",
"shell.execute_reply": "2024-08-16T07:41:03.820891Z"
},
"id": "sFvoII8lnpyi"
},
"outputs": [
{
"data": {
"text/plain": [
"array([[-3.2765586 , -0.37794957, 3.0517902 ]], dtype=float32)"
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"export_model(tf.constant(['The field bristled with the long and deadly spears which they bore.'])).numpy()"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:03.824737Z",
"iopub.status.busy": "2024-08-16T07:41:03.824504Z",
"iopub.status.idle": "2024-08-16T07:41:04.404459Z",
"shell.execute_reply": "2024-08-16T07:41:04.403712Z"
},
"id": "nig380T3siW_"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"2024-08-16 07:41:04.103166: W tensorflow/core/grappler/optimizers/loop_optimizer.cc:933] Skipping loop optimization for Merge node with control input: StatefulPartitionedCall/StatefulPartitionedCall/sequential_2/StatefulPartitionedCall/my_tokenizer/UnicodeScriptTokenize/RaggedConcat/assert_equal_1/Assert/AssertGuard/branch_executed/_42\n"
]
},
{
"data": {
"text/plain": [
"array([[-3.2765586 , -0.37794957, 3.0517902 ]], dtype=float32)"
]
},
"execution_count": 63,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"loaded(tf.constant(['The field bristled with the long and deadly spears which they bore.'])).numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "o6Mm0Y9QYQwE"
},
"source": [
"The loss and accuracy for the model on encoded validation set and the exported model on the raw validation set are the same, as expected."
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Stk2BP8GE-qo"
},
"source": [
"### Run inference on new data"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:04.408476Z",
"iopub.status.busy": "2024-08-16T07:41:04.408203Z",
"iopub.status.idle": "2024-08-16T07:41:06.198375Z",
"shell.execute_reply": "2024-08-16T07:41:06.197646Z"
},
"id": "-w1fQGJPD2Yh"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\r",
"1/1 [==============================] - ETA: 0s"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r",
"1/1 [==============================] - 2s 2s/step\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Question: Join'd to th' Ionians with their flowing robes,\n",
"Predicted label: 1\n",
"Question: the allies, and his armour flashed about him so that he seemed to all\n",
"Predicted label: 2\n",
"Question: And with loud clangor of his arms he fell.\n",
"Predicted label: 0\n"
]
}
],
"source": [
"inputs = [\n",
" \"Join'd to th' Ionians with their flowing robes,\", # Label: 1\n",
" \"the allies, and his armour flashed about him so that he seemed to all\", # Label: 2\n",
" \"And with loud clangor of his arms he fell.\", # Label: 0\n",
"]\n",
"\n",
"predicted_scores = export_model.predict(inputs)\n",
"predicted_labels = tf.math.argmax(predicted_scores, axis=1)\n",
"\n",
"for input, label in zip(inputs, predicted_labels):\n",
" print(\"Question: \", input)\n",
" print(\"Predicted label: \", label.numpy())"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9eA8TVdnA-3L"
},
"source": [
"## Download more datasets using TensorFlow Datasets (TFDS)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "2QFSxfZ3Vqsn"
},
"source": [
"You can download many more datasets from [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/overview).\n",
"\n",
"In this example, you will use the [IMDB Large Movie Review dataset](https://www.tensorflow.org/datasets/catalog/imdb_reviews) to train a model for sentiment classification:"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:06.202360Z",
"iopub.status.busy": "2024-08-16T07:41:06.201707Z",
"iopub.status.idle": "2024-08-16T07:41:06.993039Z",
"shell.execute_reply": "2024-08-16T07:41:06.992294Z"
},
"id": "NzC65LOaVw0B"
},
"outputs": [],
"source": [
"# Training set.\n",
"train_ds = tfds.load(\n",
" 'imdb_reviews',\n",
" split='train[:80%]',\n",
" batch_size=BATCH_SIZE,\n",
" shuffle_files=True,\n",
" as_supervised=True)"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:06.996887Z",
"iopub.status.busy": "2024-08-16T07:41:06.996634Z",
"iopub.status.idle": "2024-08-16T07:41:07.450468Z",
"shell.execute_reply": "2024-08-16T07:41:07.449721Z"
},
"id": "XKGkgPBkFh0k"
},
"outputs": [],
"source": [
"# Validation set.\n",
"val_ds = tfds.load(\n",
" 'imdb_reviews',\n",
" split='train[80%:]',\n",
" batch_size=BATCH_SIZE,\n",
" shuffle_files=True,\n",
" as_supervised=True)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "BQjf3YZAb5Ne"
},
"source": [
"Print a few examples:"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {
"execution": {
"iopub.execute_input": "2024-08-16T07:41:07.454909Z",
"iopub.status.busy": "2024-08-16T07:41:07.454258Z",
"iopub.status.idle": "2024-08-16T07:41:07.896516Z",
"shell.execute_reply": "2024-08-16T07:41:07.895825Z"
},
"id": "Bq1w8MnfWt2C"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Review: b\"Instead, go to the zoo, buy some peanuts and feed 'em to the monkeys. Monkeys are funny. People with amnesia who don't say much, just sit there with vacant eyes are not all that funny.
Black comedy? There isn't a black person in it, and there isn't one funny thing in it either.
Walmart buys these things up somehow and puts them on their dollar rack. It's labeled Unrated. I think they took out the topless scene. They may have taken out other stuff too, who knows? All we know is that whatever they took out, isn't there any more.
The acting seemed OK to me. There's a lot of unfathomables tho. It's supposed to be a city? It's supposed to be a big lake? If it's so hot in the church people are fanning themselves, why are they all wearing coats?\"\n", "Label: 0\n", "Review: b'Well, was Morgan Freeman any more unusual as God than George Burns? This film sure was better than that bore, \"Oh, God\". I was totally engrossed and LMAO all the way through. Carrey was perfect as the out of sorts anchorman wannabe, and Aniston carried off her part as the frustrated girlfriend in her usual well played performance. I, for one, don\\'t consider her to be either ugly or untalented. I think my favorite scene was when Carrey opened up the file cabinet thinking it could never hold his life history. See if you can spot the file in the cabinet that holds the events of his bathroom humor: I was rolling over this one. Well written and even better played out, this comedy will go down as one of this funnyman\\'s best.'\n", "Label: 1\n", "Review: b'I remember stumbling upon this special while channel-surfing in 1965. I had never heard of Barbra before. When the show was over, I thought \"This is probably the best thing on TV I will ever see in my life.\" 42 years later, that has held true. There is still nothing so amazing, so honestly astonishing as the talent that was displayed here. You can talk about all the super-stars you want to, this is the most superlative of them all!
You name it, she can do it. Comedy, pathos, sultry seduction, ballads, Barbra is truly a story-teller. Her ability to pull off anything she attempts is legendary. But this special was made in the beginning, and helped to create the legend that she quickly became. In spite of rising so far in such a short time, she has fulfilled the promise, revealing more of her talents as she went along. But they are all here from the very beginning. You will not be disappointed in viewing this.'\n", "Label: 1\n", "Review: b\"Firstly, I would like to point out that people who have criticised this film have made some glaring errors. Anything that has a rating below 6/10 is clearly utter nonsense.
Creep is an absolutely fantastic film with amazing film effects. The actors are highly believable, the narrative thought provoking and the horror and graphical content extremely disturbing.
There is much mystique in this film. Many questions arise as the audience are revealed to the strange and freakish creature that makes habitat in the dark rat ridden tunnels. How was 'Craig' created and what happened to him?
A fantastic film with a large chill factor. A film with so many unanswered questions and a film that needs to be appreciated along with others like 28 Days Later, The Bunker, Dog Soldiers and Deathwatch.
Look forward to more of these fantastic films!!\"\n", "Label: 1\n", "Review: b\"I'm sorry but I didn't like this doc very much. I can think of a million ways it could have been better. The people who made it obviously don't have much imagination. The interviews aren't very interesting and no real insight is offered. The footage isn't assembled in a very informative way, either. It's too bad because this is a movie that really deserves spellbinding special features. One thing I'll say is that Isabella Rosselini gets more beautiful the older she gets. All considered, this only gets a '4.'\"\n", "Label: 0\n" ] } ], "source": [ "for review_batch, label_batch in val_ds.take(1):\n", " for i in range(5):\n", " print(\"Review: \", review_batch[i].numpy())\n", " print(\"Label: \", label_batch[i].numpy())" ] }, { "cell_type": "markdown", "metadata": { "id": "q-lVaukyb75k" }, "source": [ "You can now preprocess the data and train a model as before.\n", "\n", "Note: You will use `tf.keras.losses.BinaryCrossentropy` instead of `tf.keras.losses.SparseCategoricalCrossentropy` for your model, since this is a binary classification problem." ] }, { "cell_type": "markdown", "metadata": { "id": "ciz2CxAsZw3Z" }, "source": [ "### Prepare the dataset for training" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:07.900669Z", "iopub.status.busy": "2024-08-16T07:41:07.900019Z", "iopub.status.idle": "2024-08-16T07:41:09.728300Z", "shell.execute_reply": "2024-08-16T07:41:09.727538Z" }, "id": "UzT_t9ihZLH4" }, "outputs": [], "source": [ "vectorize_layer = TextVectorization(\n", " max_tokens=VOCAB_SIZE,\n", " output_mode='int',\n", " output_sequence_length=MAX_SEQUENCE_LENGTH)\n", "\n", "# Make a text-only dataset (without labels), then call `TextVectorization.adapt`.\n", "train_text = train_ds.map(lambda text, labels: text)\n", "vectorize_layer.adapt(train_text)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.732712Z", "iopub.status.busy": "2024-08-16T07:41:09.732028Z", "iopub.status.idle": "2024-08-16T07:41:09.735983Z", "shell.execute_reply": "2024-08-16T07:41:09.735398Z" }, "id": "zz-Xrd_ZZ4tB" }, "outputs": [], "source": [ "def vectorize_text(text, label):\n", " text = tf.expand_dims(text, -1)\n", " return vectorize_layer(text), label" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.739242Z", "iopub.status.busy": "2024-08-16T07:41:09.738636Z", "iopub.status.idle": "2024-08-16T07:41:09.835418Z", "shell.execute_reply": "2024-08-16T07:41:09.834834Z" }, "id": "ycn0Itd6g5aF" }, "outputs": [], "source": [ "train_ds = train_ds.map(vectorize_text)\n", "val_ds = val_ds.map(vectorize_text)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.838943Z", "iopub.status.busy": "2024-08-16T07:41:09.838418Z", "iopub.status.idle": "2024-08-16T07:41:09.844579Z", "shell.execute_reply": "2024-08-16T07:41:09.843977Z" }, "id": "jc11jQTlZ5lj" }, "outputs": [], "source": [ "# Configure datasets for performance as before.\n", "train_ds = train_ds.cache().prefetch(tf.data.AUTOTUNE)\n", "val_ds = val_ds.cache().prefetch(tf.data.AUTOTUNE)" ] }, { "cell_type": "markdown", "metadata": { "id": "SQzoYkaGZ82Z" }, "source": [ "### Create, configure and train the model" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.848050Z", "iopub.status.busy": "2024-08-16T07:41:09.847592Z", "iopub.status.idle": "2024-08-16T07:41:09.900016Z", "shell.execute_reply": "2024-08-16T07:41:09.899462Z" }, "id": "B9IOTLkyZ-a7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_5\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Layer (type) Output Shape Param # \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " embedding_2 (Embedding) (None, None, 64) 640000 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout_2 (Dropout) (None, None, 64) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " conv1d_2 (Conv1D) (None, None, 64) 20544 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " global_max_pooling1d_2 (Gl (None, 64) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " obalMaxPooling1D) \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dense_3 (Dense) (None, 1) 65 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total params: 660609 (2.52 MB)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Trainable params: 660609 (2.52 MB)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Non-trainable params: 0 (0.00 Byte)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] } ], "source": [ "model = create_model(vocab_size=VOCAB_SIZE, num_labels=1)\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.908323Z", "iopub.status.busy": "2024-08-16T07:41:09.908078Z", "iopub.status.idle": "2024-08-16T07:41:09.917529Z", "shell.execute_reply": "2024-08-16T07:41:09.916957Z" }, "id": "xLnDs5dhaBAk" }, "outputs": [], "source": [ "model.compile(\n", " loss=losses.BinaryCrossentropy(from_logits=True),\n", " optimizer='adam',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.920616Z", "iopub.status.busy": "2024-08-16T07:41:09.920393Z", "iopub.status.idle": "2024-08-16T07:41:20.605445Z", "shell.execute_reply": "2024-08-16T07:41:20.604731Z" }, "id": "rq59QpNzaDMa" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 4:37 - loss: 0.6916 - accuracy: 0.5156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/313 [..............................] - ETA: 3s - loss: 0.6932 - accuracy: 0.4922 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/313 [>.............................] - ETA: 3s - loss: 0.6924 - accuracy: 0.4818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/313 [>.............................] - ETA: 2s - loss: 0.6929 - accuracy: 0.4931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/313 [=>............................] - ETA: 2s - loss: 0.6926 - accuracy: 0.4896" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/313 [=>............................] - ETA: 2s - loss: 0.6925 - accuracy: 0.4995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/313 [==>...........................] - ETA: 2s - loss: 0.6923 - accuracy: 0.5056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/313 [===>..........................] - ETA: 2s - loss: 0.6925 - accuracy: 0.5004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/313 [===>..........................] - ETA: 2s - loss: 0.6925 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/313 [====>.........................] - ETA: 2s - loss: 0.6921 - accuracy: 0.5006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/313 [====>.........................] - ETA: 2s - loss: 0.6920 - accuracy: 0.4995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/313 [=====>........................] - ETA: 2s - loss: 0.6916 - accuracy: 0.4941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/313 [=====>........................] - ETA: 2s - loss: 0.6914 - accuracy: 0.4915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/313 [======>.......................] - ETA: 2s - loss: 0.6914 - accuracy: 0.4940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/313 [=======>......................] - ETA: 2s - loss: 0.6911 - accuracy: 0.4952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/313 [=======>......................] - ETA: 2s - loss: 0.6909 - accuracy: 0.4986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/313 [========>.....................] - ETA: 2s - loss: 0.6904 - accuracy: 0.4990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/313 [========>.....................] - ETA: 1s - loss: 0.6897 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/313 [=========>....................] - ETA: 1s - loss: 0.6894 - accuracy: 0.4971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/313 [=========>....................] - ETA: 1s - loss: 0.6886 - accuracy: 0.4973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/313 [==========>...................] - ETA: 1s - loss: 0.6878 - accuracy: 0.4996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/313 [===========>..................] - ETA: 1s - loss: 0.6867 - accuracy: 0.4985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/313 [===========>..................] - ETA: 1s - loss: 0.6856 - accuracy: 0.5006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/313 [============>.................] - ETA: 1s - loss: 0.6842 - accuracy: 0.5018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/313 [============>.................] - ETA: 1s - loss: 0.6829 - accuracy: 0.5015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/313 [=============>................] - ETA: 1s - loss: 0.6812 - accuracy: 0.5008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/313 [=============>................] - ETA: 1s - loss: 0.6789 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/313 [==============>...............] - ETA: 1s - loss: 0.6764 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/313 [===============>..............] - ETA: 1s - loss: 0.6749 - accuracy: 0.5034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/313 [===============>..............] - ETA: 1s - loss: 0.6723 - accuracy: 0.5051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/313 [================>.............] - ETA: 1s - loss: 0.6695 - accuracy: 0.5067" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/313 [================>.............] - ETA: 1s - loss: 0.6672 - accuracy: 0.5094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/313 [=================>............] - ETA: 1s - loss: 0.6642 - accuracy: 0.5157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/313 [=================>............] - ETA: 1s - loss: 0.6607 - accuracy: 0.5215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/313 [==================>...........] - ETA: 1s - loss: 0.6569 - accuracy: 0.5281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/313 [===================>..........] - ETA: 0s - loss: 0.6544 - accuracy: 0.5337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216/313 [===================>..........] - ETA: 0s - loss: 0.6506 - accuracy: 0.5402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222/313 [====================>.........] - ETA: 0s - loss: 0.6462 - accuracy: 0.5464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/313 [====================>.........] - ETA: 0s - loss: 0.6428 - accuracy: 0.5519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "234/313 [=====================>........] - ETA: 0s - loss: 0.6391 - accuracy: 0.5580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/313 [======================>.......] - ETA: 0s - loss: 0.6348 - accuracy: 0.5635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "246/313 [======================>.......] - ETA: 0s - loss: 0.6306 - accuracy: 0.5683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "252/313 [=======================>......] - ETA: 0s - loss: 0.6277 - accuracy: 0.5728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/313 [=======================>......] - ETA: 0s - loss: 0.6241 - accuracy: 0.5773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "264/313 [========================>.....] - ETA: 0s - loss: 0.6203 - accuracy: 0.5821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "269/313 [========================>.....] - ETA: 0s - loss: 0.6184 - accuracy: 0.5852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "274/313 [=========================>....] - ETA: 0s - loss: 0.6157 - accuracy: 0.5885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "279/313 [=========================>....] - ETA: 0s - loss: 0.6133 - accuracy: 0.5920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "285/313 [==========================>...] - ETA: 0s - loss: 0.6104 - accuracy: 0.5956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "291/313 [==========================>...] - ETA: 0s - loss: 0.6065 - accuracy: 0.6004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "297/313 [===========================>..] - ETA: 0s - loss: 0.6044 - accuracy: 0.6034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "303/313 [============================>.] - ETA: 0s - loss: 0.6010 - accuracy: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "309/313 [============================>.] - ETA: 0s - loss: 0.5984 - accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 5s 12ms/step - loss: 0.5965 - accuracy: 0.6120 - val_loss: 0.4267 - val_accuracy: 0.7970\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 3s - loss: 0.5233 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/313 [..............................] - ETA: 2s - loss: 0.4360 - accuracy: 0.8058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/313 [>.............................] - ETA: 2s - loss: 0.4308 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/313 [>.............................] - ETA: 2s - loss: 0.4350 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/313 [=>............................] - ETA: 2s - loss: 0.4322 - accuracy: 0.7881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/313 [=>............................] - ETA: 2s - loss: 0.4325 - accuracy: 0.7888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/313 [==>...........................] - ETA: 2s - loss: 0.4210 - accuracy: 0.7960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/313 [===>..........................] - ETA: 2s - loss: 0.4197 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/313 [===>..........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.7997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/313 [====>.........................] - ETA: 2s - loss: 0.4197 - accuracy: 0.8003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/313 [====>.........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.8010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/313 [=====>........................] - ETA: 2s - loss: 0.4180 - accuracy: 0.7987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/313 [=====>........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.7992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/313 [======>.......................] - ETA: 2s - loss: 0.4173 - accuracy: 0.7998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/313 [=======>......................] - ETA: 2s - loss: 0.4156 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/313 [=======>......................] - ETA: 2s - loss: 0.4120 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/313 [========>.....................] - ETA: 2s - loss: 0.4086 - accuracy: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/313 [========>.....................] - ETA: 1s - loss: 0.4077 - accuracy: 0.8060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/313 [=========>....................] - ETA: 1s - loss: 0.4088 - accuracy: 0.8063" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/313 [==========>...................] - ETA: 1s - loss: 0.4058 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/313 [==========>...................] - ETA: 1s - loss: 0.4074 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/313 [===========>..................] - ETA: 1s - loss: 0.4071 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/313 [===========>..................] - ETA: 1s - loss: 0.4046 - accuracy: 0.8107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/313 [============>.................] - ETA: 1s - loss: 0.4033 - accuracy: 0.8119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/313 [============>.................] - ETA: 1s - loss: 0.4026 - accuracy: 0.8112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/313 [=============>................] - ETA: 1s - loss: 0.3998 - accuracy: 0.8128" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/313 [==============>...............] - ETA: 1s - loss: 0.3986 - accuracy: 0.8129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/313 [==============>...............] - ETA: 1s - loss: 0.3982 - accuracy: 0.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/313 [===============>..............] - ETA: 1s - loss: 0.3990 - accuracy: 0.8129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/313 [===============>..............] - ETA: 1s - loss: 0.3971 - accuracy: 0.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/313 [================>.............] - ETA: 1s - loss: 0.3960 - accuracy: 0.8148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/313 [================>.............] - ETA: 1s - loss: 0.3969 - accuracy: 0.8148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/313 [=================>............] - ETA: 1s - loss: 0.3957 - accuracy: 0.8160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/313 [=================>............] - ETA: 1s - loss: 0.3936 - accuracy: 0.8166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/313 [==================>...........] - ETA: 0s - loss: 0.3930 - accuracy: 0.8166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/313 [===================>..........] - ETA: 0s - loss: 0.3930 - accuracy: 0.8169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216/313 [===================>..........] - ETA: 0s - loss: 0.3910 - accuracy: 0.8173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222/313 [====================>.........] - ETA: 0s - loss: 0.3894 - accuracy: 0.8183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/313 [====================>.........] - ETA: 0s - loss: 0.3875 - accuracy: 0.8192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "234/313 [=====================>........] - ETA: 0s - loss: 0.3861 - accuracy: 0.8206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/313 [======================>.......] - ETA: 0s - loss: 0.3840 - accuracy: 0.8223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "246/313 [======================>.......] - ETA: 0s - loss: 0.3824 - accuracy: 0.8234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "252/313 [=======================>......] - ETA: 0s - loss: 0.3823 - accuracy: 0.8238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/313 [=======================>......] - ETA: 0s - loss: 0.3809 - accuracy: 0.8247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "264/313 [========================>.....] - ETA: 0s - loss: 0.3790 - accuracy: 0.8258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "270/313 [========================>.....] - ETA: 0s - loss: 0.3792 - accuracy: 0.8257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "276/313 [=========================>....] - ETA: 0s - loss: 0.3782 - accuracy: 0.8263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "282/313 [==========================>...] - ETA: 0s - loss: 0.3771 - accuracy: 0.8270" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "288/313 [==========================>...] - ETA: 0s - loss: 0.3765 - accuracy: 0.8277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "294/313 [===========================>..] - ETA: 0s - loss: 0.3750 - accuracy: 0.8283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "299/313 [===========================>..] - ETA: 0s - loss: 0.3746 - accuracy: 0.8284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "305/313 [============================>.] - ETA: 0s - loss: 0.3739 - accuracy: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "311/313 [============================>.] - ETA: 0s - loss: 0.3728 - accuracy: 0.8298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 3s 10ms/step - loss: 0.3725 - accuracy: 0.8299 - val_loss: 0.3418 - val_accuracy: 0.8454\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 3s - loss: 0.4751 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/313 [..............................] - ETA: 2s - loss: 0.3500 - accuracy: 0.8504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/313 [>.............................] - ETA: 2s - loss: 0.3312 - accuracy: 0.8522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/313 [>.............................] - ETA: 2s - loss: 0.3273 - accuracy: 0.8520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/313 [=>............................] - ETA: 2s - loss: 0.3250 - accuracy: 0.8544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/313 [=>............................] - ETA: 2s - loss: 0.3236 - accuracy: 0.8543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/313 [==>...........................] - ETA: 2s - loss: 0.3152 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/313 [===>..........................] - ETA: 2s - loss: 0.3134 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/313 [===>..........................] - ETA: 2s - loss: 0.3117 - accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/313 [====>.........................] - ETA: 2s - loss: 0.3116 - accuracy: 0.8634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/313 [====>.........................] - ETA: 2s - loss: 0.3135 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/313 [=====>........................] - ETA: 2s - loss: 0.3146 - accuracy: 0.8589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/313 [=====>........................] - ETA: 2s - loss: 0.3156 - accuracy: 0.8589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/313 [======>.......................] - ETA: 2s - loss: 0.3147 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/313 [======>.......................] - ETA: 2s - loss: 0.3156 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/313 [=======>......................] - ETA: 2s - loss: 0.3132 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/313 [========>.....................] - ETA: 2s - loss: 0.3102 - accuracy: 0.8629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/313 [========>.....................] - ETA: 2s - loss: 0.3075 - accuracy: 0.8642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/313 [=========>....................] - ETA: 1s - loss: 0.3049 - accuracy: 0.8659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/313 [=========>....................] - ETA: 1s - loss: 0.3055 - accuracy: 0.8647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/313 [==========>...................] - ETA: 1s - loss: 0.3065 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/313 [==========>...................] - ETA: 1s - loss: 0.3068 - accuracy: 0.8647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/313 [===========>..................] - ETA: 1s - loss: 0.3068 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/313 [============>.................] - ETA: 1s - loss: 0.3055 - accuracy: 0.8659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/313 [============>.................] - ETA: 1s - loss: 0.3044 - accuracy: 0.8674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/313 [=============>................] - ETA: 1s - loss: 0.3018 - accuracy: 0.8681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/313 [=============>................] - ETA: 1s - loss: 0.3008 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/313 [==============>...............] - ETA: 1s - loss: 0.3006 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/313 [==============>...............] - ETA: 1s - loss: 0.3028 - accuracy: 0.8683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/313 [===============>..............] - ETA: 1s - loss: 0.3019 - accuracy: 0.8680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/313 [================>.............] - ETA: 1s - loss: 0.3001 - accuracy: 0.8694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/313 [================>.............] - ETA: 1s - loss: 0.3007 - accuracy: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "188/313 [=================>............] - ETA: 1s - loss: 0.3005 - accuracy: 0.8690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "194/313 [=================>............] - ETA: 1s - loss: 0.3001 - accuracy: 0.8693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "200/313 [==================>...........] - ETA: 1s - loss: 0.3003 - accuracy: 0.8690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "206/313 [==================>...........] - ETA: 0s - loss: 0.2994 - accuracy: 0.8691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "212/313 [===================>..........] - ETA: 0s - loss: 0.2985 - accuracy: 0.8695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "218/313 [===================>..........] - ETA: 0s - loss: 0.2974 - accuracy: 0.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "224/313 [====================>.........] - ETA: 0s - loss: 0.2959 - accuracy: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "230/313 [=====================>........] - ETA: 0s - loss: 0.2948 - accuracy: 0.8717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "236/313 [=====================>........] - ETA: 0s - loss: 0.2937 - accuracy: 0.8725" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "242/313 [======================>.......] - ETA: 0s - loss: 0.2926 - accuracy: 0.8728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "248/313 [======================>.......] - ETA: 0s - loss: 0.2920 - accuracy: 0.8733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "254/313 [=======================>......] - ETA: 0s - loss: 0.2917 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "260/313 [=======================>......] - ETA: 0s - loss: 0.2904 - accuracy: 0.8742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "266/313 [========================>.....] - ETA: 0s - loss: 0.2895 - accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "272/313 [=========================>....] - ETA: 0s - loss: 0.2905 - accuracy: 0.8747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "278/313 [=========================>....] - ETA: 0s - loss: 0.2890 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "284/313 [==========================>...] - ETA: 0s - loss: 0.2882 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "290/313 [==========================>...] - ETA: 0s - loss: 0.2875 - accuracy: 0.8765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "296/313 [===========================>..] - ETA: 0s - loss: 0.2864 - accuracy: 0.8771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "302/313 [===========================>..] - ETA: 0s - loss: 0.2855 - accuracy: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "308/313 [============================>.] - ETA: 0s - loss: 0.2850 - accuracy: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 3s 10ms/step - loss: 0.2846 - accuracy: 0.8781 - val_loss: 0.3165 - val_accuracy: 0.8584\n" ] } ], "source": [ "history = model.fit(train_ds, validation_data=val_ds, epochs=3)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.609044Z", "iopub.status.busy": "2024-08-16T07:41:20.608788Z", "iopub.status.idle": "2024-08-16T07:41:20.789381Z", "shell.execute_reply": "2024-08-16T07:41:20.788669Z" }, "id": "gCMWCEtyaEbR" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/79 [..............................] - ETA: 0s - loss: 0.2093 - accuracy: 0.9219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/79 [========>.....................] - ETA: 0s - loss: 0.3243 - accuracy: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "51/79 [==================>...........] - ETA: 0s - loss: 0.3186 - accuracy: 0.8569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "76/79 [===========================>..] - ETA: 0s - loss: 0.3142 - accuracy: 0.8596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "79/79 [==============================] - 0s 2ms/step - loss: 0.3165 - accuracy: 0.8584\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loss: 0.3165397047996521\n", "Accuracy: 85.84%\n" ] } ], "source": [ "loss, accuracy = model.evaluate(val_ds)\n", "\n", "print(\"Loss: \", loss)\n", "print(\"Accuracy: {:2.2%}\".format(accuracy))" ] }, { "cell_type": "markdown", "metadata": { "id": "jGtqLXVnaaFy" }, "source": [ "### Export the model" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.792905Z", "iopub.status.busy": "2024-08-16T07:41:20.792634Z", "iopub.status.idle": "2024-08-16T07:41:20.850931Z", "shell.execute_reply": "2024-08-16T07:41:20.850331Z" }, "id": "yE9WZARZaZr1" }, "outputs": [], "source": [ "export_model = tf.keras.Sequential(\n", " [vectorize_layer, model,\n", " layers.Activation('sigmoid')])\n", "\n", "export_model.compile(\n", " loss=losses.SparseCategoricalCrossentropy(from_logits=False),\n", " optimizer='adam',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.854440Z", "iopub.status.busy": "2024-08-16T07:41:20.853886Z", "iopub.status.idle": "2024-08-16T07:41:20.995063Z", "shell.execute_reply": "2024-08-16T07:41:20.994363Z" }, "id": "bhF8tDH-afoC" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 0s 100ms/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Question: This is a fantastic movie.\n", "Predicted label: 1\n", "Question: This is a bad movie.\n", "Predicted label: 0\n", "Question: This movie was so bad that it was good.\n", "Predicted label: 0\n", "Question: I will never say yes to watching this movie.\n", "Predicted label: 1\n" ] } ], "source": [ "# 0 --> negative review\n", "# 1 --> positive review\n", "inputs = [\n", " \"This is a fantastic movie.\",\n", " \"This is a bad movie.\",\n", " \"This movie was so bad that it was good.\",\n", " \"I will never say yes to watching this movie.\",\n", "]\n", "\n", "predicted_scores = export_model.predict(inputs)\n", "predicted_labels = [int(round(x[0])) for x in predicted_scores]\n", "\n", "for input, label in zip(inputs, predicted_labels):\n", " print(\"Question: \", input)\n", " print(\"Predicted label: \", label)" ] }, { "cell_type": "markdown", "metadata": { "id": "q1KSXDFPWiPN" }, "source": [ "## Conclusion\n", "\n", "This tutorial demonstrated several ways to load and preprocess text. As a next step, you can explore additional text preprocessing [TensorFlow Text](https://www.tensorflow.org/text) tutorials, such as:\n", "\n", "- [BERT Preprocessing with TF Text](https://www.tensorflow.org/text/guide/bert_preprocessing_guide)\n", "- [Tokenizing with TF Text](https://www.tensorflow.org/text/guide/tokenizers)\n", "- [Subword tokenizers](https://www.tensorflow.org/text/guide/subwords_tokenizer)\n", "\n", "You can also find new datasets on [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/overview). And, to learn more about `tf.data`, check out the guide on [building input pipelines](../../guide/data.ipynb)." ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "private_outputs": true, "provenance": [ { "file_id": "1XHr3IzoXn_Si4HSDpY43hdTirjwMDvON", "timestamp": 1694267031282 }, { "file_id": "https://github.com/tensorflow/docs/blob/4daf8a1645ddb4dd97ef31dca2e456ffaedbc8a1/site/en/tutorials/load_data/text.ipynb", "timestamp": 1694092268316 } ], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 0 }
\n",
" ![]() | \n",
" \n",
" ![]() | \n",
" \n",
" ![]() | \n",
" \n",
" ![]() | \n",
"
Black comedy? There isn't a black person in it, and there isn't one funny thing in it either.
Walmart buys these things up somehow and puts them on their dollar rack. It's labeled Unrated. I think they took out the topless scene. They may have taken out other stuff too, who knows? All we know is that whatever they took out, isn't there any more.
The acting seemed OK to me. There's a lot of unfathomables tho. It's supposed to be a city? It's supposed to be a big lake? If it's so hot in the church people are fanning themselves, why are they all wearing coats?\"\n", "Label: 0\n", "Review: b'Well, was Morgan Freeman any more unusual as God than George Burns? This film sure was better than that bore, \"Oh, God\". I was totally engrossed and LMAO all the way through. Carrey was perfect as the out of sorts anchorman wannabe, and Aniston carried off her part as the frustrated girlfriend in her usual well played performance. I, for one, don\\'t consider her to be either ugly or untalented. I think my favorite scene was when Carrey opened up the file cabinet thinking it could never hold his life history. See if you can spot the file in the cabinet that holds the events of his bathroom humor: I was rolling over this one. Well written and even better played out, this comedy will go down as one of this funnyman\\'s best.'\n", "Label: 1\n", "Review: b'I remember stumbling upon this special while channel-surfing in 1965. I had never heard of Barbra before. When the show was over, I thought \"This is probably the best thing on TV I will ever see in my life.\" 42 years later, that has held true. There is still nothing so amazing, so honestly astonishing as the talent that was displayed here. You can talk about all the super-stars you want to, this is the most superlative of them all!
You name it, she can do it. Comedy, pathos, sultry seduction, ballads, Barbra is truly a story-teller. Her ability to pull off anything she attempts is legendary. But this special was made in the beginning, and helped to create the legend that she quickly became. In spite of rising so far in such a short time, she has fulfilled the promise, revealing more of her talents as she went along. But they are all here from the very beginning. You will not be disappointed in viewing this.'\n", "Label: 1\n", "Review: b\"Firstly, I would like to point out that people who have criticised this film have made some glaring errors. Anything that has a rating below 6/10 is clearly utter nonsense.
Creep is an absolutely fantastic film with amazing film effects. The actors are highly believable, the narrative thought provoking and the horror and graphical content extremely disturbing.
There is much mystique in this film. Many questions arise as the audience are revealed to the strange and freakish creature that makes habitat in the dark rat ridden tunnels. How was 'Craig' created and what happened to him?
A fantastic film with a large chill factor. A film with so many unanswered questions and a film that needs to be appreciated along with others like 28 Days Later, The Bunker, Dog Soldiers and Deathwatch.
Look forward to more of these fantastic films!!\"\n", "Label: 1\n", "Review: b\"I'm sorry but I didn't like this doc very much. I can think of a million ways it could have been better. The people who made it obviously don't have much imagination. The interviews aren't very interesting and no real insight is offered. The footage isn't assembled in a very informative way, either. It's too bad because this is a movie that really deserves spellbinding special features. One thing I'll say is that Isabella Rosselini gets more beautiful the older she gets. All considered, this only gets a '4.'\"\n", "Label: 0\n" ] } ], "source": [ "for review_batch, label_batch in val_ds.take(1):\n", " for i in range(5):\n", " print(\"Review: \", review_batch[i].numpy())\n", " print(\"Label: \", label_batch[i].numpy())" ] }, { "cell_type": "markdown", "metadata": { "id": "q-lVaukyb75k" }, "source": [ "You can now preprocess the data and train a model as before.\n", "\n", "Note: You will use `tf.keras.losses.BinaryCrossentropy` instead of `tf.keras.losses.SparseCategoricalCrossentropy` for your model, since this is a binary classification problem." ] }, { "cell_type": "markdown", "metadata": { "id": "ciz2CxAsZw3Z" }, "source": [ "### Prepare the dataset for training" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:07.900669Z", "iopub.status.busy": "2024-08-16T07:41:07.900019Z", "iopub.status.idle": "2024-08-16T07:41:09.728300Z", "shell.execute_reply": "2024-08-16T07:41:09.727538Z" }, "id": "UzT_t9ihZLH4" }, "outputs": [], "source": [ "vectorize_layer = TextVectorization(\n", " max_tokens=VOCAB_SIZE,\n", " output_mode='int',\n", " output_sequence_length=MAX_SEQUENCE_LENGTH)\n", "\n", "# Make a text-only dataset (without labels), then call `TextVectorization.adapt`.\n", "train_text = train_ds.map(lambda text, labels: text)\n", "vectorize_layer.adapt(train_text)" ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.732712Z", "iopub.status.busy": "2024-08-16T07:41:09.732028Z", "iopub.status.idle": "2024-08-16T07:41:09.735983Z", "shell.execute_reply": "2024-08-16T07:41:09.735398Z" }, "id": "zz-Xrd_ZZ4tB" }, "outputs": [], "source": [ "def vectorize_text(text, label):\n", " text = tf.expand_dims(text, -1)\n", " return vectorize_layer(text), label" ] }, { "cell_type": "code", "execution_count": 70, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.739242Z", "iopub.status.busy": "2024-08-16T07:41:09.738636Z", "iopub.status.idle": "2024-08-16T07:41:09.835418Z", "shell.execute_reply": "2024-08-16T07:41:09.834834Z" }, "id": "ycn0Itd6g5aF" }, "outputs": [], "source": [ "train_ds = train_ds.map(vectorize_text)\n", "val_ds = val_ds.map(vectorize_text)" ] }, { "cell_type": "code", "execution_count": 71, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.838943Z", "iopub.status.busy": "2024-08-16T07:41:09.838418Z", "iopub.status.idle": "2024-08-16T07:41:09.844579Z", "shell.execute_reply": "2024-08-16T07:41:09.843977Z" }, "id": "jc11jQTlZ5lj" }, "outputs": [], "source": [ "# Configure datasets for performance as before.\n", "train_ds = train_ds.cache().prefetch(tf.data.AUTOTUNE)\n", "val_ds = val_ds.cache().prefetch(tf.data.AUTOTUNE)" ] }, { "cell_type": "markdown", "metadata": { "id": "SQzoYkaGZ82Z" }, "source": [ "### Create, configure and train the model" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.848050Z", "iopub.status.busy": "2024-08-16T07:41:09.847592Z", "iopub.status.idle": "2024-08-16T07:41:09.900016Z", "shell.execute_reply": "2024-08-16T07:41:09.899462Z" }, "id": "B9IOTLkyZ-a7" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Model: \"sequential_5\"\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " Layer (type) Output Shape Param # \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " embedding_2 (Embedding) (None, None, 64) 640000 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dropout_2 (Dropout) (None, None, 64) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " conv1d_2 (Conv1D) (None, None, 64) 20544 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " global_max_pooling1d_2 (Gl (None, 64) 0 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " obalMaxPooling1D) \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " dense_3 (Dense) (None, 1) 65 \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ " \n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "=================================================================\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Total params: 660609 (2.52 MB)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Trainable params: 660609 (2.52 MB)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Non-trainable params: 0 (0.00 Byte)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "_________________________________________________________________\n" ] } ], "source": [ "model = create_model(vocab_size=VOCAB_SIZE, num_labels=1)\n", "model.summary()" ] }, { "cell_type": "code", "execution_count": 73, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.908323Z", "iopub.status.busy": "2024-08-16T07:41:09.908078Z", "iopub.status.idle": "2024-08-16T07:41:09.917529Z", "shell.execute_reply": "2024-08-16T07:41:09.916957Z" }, "id": "xLnDs5dhaBAk" }, "outputs": [], "source": [ "model.compile(\n", " loss=losses.BinaryCrossentropy(from_logits=True),\n", " optimizer='adam',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:09.920616Z", "iopub.status.busy": "2024-08-16T07:41:09.920393Z", "iopub.status.idle": "2024-08-16T07:41:20.605445Z", "shell.execute_reply": "2024-08-16T07:41:20.604731Z" }, "id": "rq59QpNzaDMa" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 1/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 4:37 - loss: 0.6916 - accuracy: 0.5156" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 6/313 [..............................] - ETA: 3s - loss: 0.6932 - accuracy: 0.4922 " ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 12/313 [>.............................] - ETA: 3s - loss: 0.6924 - accuracy: 0.4818" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 18/313 [>.............................] - ETA: 2s - loss: 0.6929 - accuracy: 0.4931" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 24/313 [=>............................] - ETA: 2s - loss: 0.6926 - accuracy: 0.4896" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 30/313 [=>............................] - ETA: 2s - loss: 0.6925 - accuracy: 0.4995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 36/313 [==>...........................] - ETA: 2s - loss: 0.6923 - accuracy: 0.5056" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 42/313 [===>..........................] - ETA: 2s - loss: 0.6925 - accuracy: 0.5004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/313 [===>..........................] - ETA: 2s - loss: 0.6925 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/313 [====>.........................] - ETA: 2s - loss: 0.6921 - accuracy: 0.5006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 60/313 [====>.........................] - ETA: 2s - loss: 0.6920 - accuracy: 0.4995" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 66/313 [=====>........................] - ETA: 2s - loss: 0.6916 - accuracy: 0.4941" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 72/313 [=====>........................] - ETA: 2s - loss: 0.6914 - accuracy: 0.4915" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 78/313 [======>.......................] - ETA: 2s - loss: 0.6914 - accuracy: 0.4940" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 84/313 [=======>......................] - ETA: 2s - loss: 0.6911 - accuracy: 0.4952" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 90/313 [=======>......................] - ETA: 2s - loss: 0.6909 - accuracy: 0.4986" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 96/313 [========>.....................] - ETA: 2s - loss: 0.6904 - accuracy: 0.4990" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "102/313 [========>.....................] - ETA: 1s - loss: 0.6897 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "108/313 [=========>....................] - ETA: 1s - loss: 0.6894 - accuracy: 0.4971" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "114/313 [=========>....................] - ETA: 1s - loss: 0.6886 - accuracy: 0.4973" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "120/313 [==========>...................] - ETA: 1s - loss: 0.6878 - accuracy: 0.4996" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "126/313 [===========>..................] - ETA: 1s - loss: 0.6867 - accuracy: 0.4985" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "132/313 [===========>..................] - ETA: 1s - loss: 0.6856 - accuracy: 0.5006" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "138/313 [============>.................] - ETA: 1s - loss: 0.6842 - accuracy: 0.5018" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "144/313 [============>.................] - ETA: 1s - loss: 0.6829 - accuracy: 0.5015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "150/313 [=============>................] - ETA: 1s - loss: 0.6812 - accuracy: 0.5008" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "156/313 [=============>................] - ETA: 1s - loss: 0.6789 - accuracy: 0.5000" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "162/313 [==============>...............] - ETA: 1s - loss: 0.6764 - accuracy: 0.4997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "168/313 [===============>..............] - ETA: 1s - loss: 0.6749 - accuracy: 0.5034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "174/313 [===============>..............] - ETA: 1s - loss: 0.6723 - accuracy: 0.5051" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/313 [================>.............] - ETA: 1s - loss: 0.6695 - accuracy: 0.5067" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/313 [================>.............] - ETA: 1s - loss: 0.6672 - accuracy: 0.5094" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/313 [=================>............] - ETA: 1s - loss: 0.6642 - accuracy: 0.5157" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/313 [=================>............] - ETA: 1s - loss: 0.6607 - accuracy: 0.5215" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/313 [==================>...........] - ETA: 1s - loss: 0.6569 - accuracy: 0.5281" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/313 [===================>..........] - ETA: 0s - loss: 0.6544 - accuracy: 0.5337" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216/313 [===================>..........] - ETA: 0s - loss: 0.6506 - accuracy: 0.5402" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222/313 [====================>.........] - ETA: 0s - loss: 0.6462 - accuracy: 0.5464" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/313 [====================>.........] - ETA: 0s - loss: 0.6428 - accuracy: 0.5519" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "234/313 [=====================>........] - ETA: 0s - loss: 0.6391 - accuracy: 0.5580" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/313 [======================>.......] - ETA: 0s - loss: 0.6348 - accuracy: 0.5635" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "246/313 [======================>.......] - ETA: 0s - loss: 0.6306 - accuracy: 0.5683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "252/313 [=======================>......] - ETA: 0s - loss: 0.6277 - accuracy: 0.5728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/313 [=======================>......] - ETA: 0s - loss: 0.6241 - accuracy: 0.5773" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "264/313 [========================>.....] - ETA: 0s - loss: 0.6203 - accuracy: 0.5821" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "269/313 [========================>.....] - ETA: 0s - loss: 0.6184 - accuracy: 0.5852" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "274/313 [=========================>....] - ETA: 0s - loss: 0.6157 - accuracy: 0.5885" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "279/313 [=========================>....] - ETA: 0s - loss: 0.6133 - accuracy: 0.5920" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "285/313 [==========================>...] - ETA: 0s - loss: 0.6104 - accuracy: 0.5956" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "291/313 [==========================>...] - ETA: 0s - loss: 0.6065 - accuracy: 0.6004" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "297/313 [===========================>..] - ETA: 0s - loss: 0.6044 - accuracy: 0.6034" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "303/313 [============================>.] - ETA: 0s - loss: 0.6010 - accuracy: 0.6071" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "309/313 [============================>.] - ETA: 0s - loss: 0.5984 - accuracy: 0.6103" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 5s 12ms/step - loss: 0.5965 - accuracy: 0.6120 - val_loss: 0.4267 - val_accuracy: 0.7970\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 2/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 3s - loss: 0.5233 - accuracy: 0.7500" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/313 [..............................] - ETA: 2s - loss: 0.4360 - accuracy: 0.8058" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/313 [>.............................] - ETA: 2s - loss: 0.4308 - accuracy: 0.7981" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/313 [>.............................] - ETA: 2s - loss: 0.4350 - accuracy: 0.7969" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/313 [=>............................] - ETA: 2s - loss: 0.4322 - accuracy: 0.7881" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/313 [=>............................] - ETA: 2s - loss: 0.4325 - accuracy: 0.7888" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/313 [==>...........................] - ETA: 2s - loss: 0.4210 - accuracy: 0.7960" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/313 [===>..........................] - ETA: 2s - loss: 0.4197 - accuracy: 0.7991" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 49/313 [===>..........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.7997" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 55/313 [====>.........................] - ETA: 2s - loss: 0.4197 - accuracy: 0.8003" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 61/313 [====>.........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.8010" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 67/313 [=====>........................] - ETA: 2s - loss: 0.4180 - accuracy: 0.7987" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 73/313 [=====>........................] - ETA: 2s - loss: 0.4188 - accuracy: 0.7992" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 79/313 [======>.......................] - ETA: 2s - loss: 0.4173 - accuracy: 0.7998" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 85/313 [=======>......................] - ETA: 2s - loss: 0.4156 - accuracy: 0.8015" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 91/313 [=======>......................] - ETA: 2s - loss: 0.4120 - accuracy: 0.8036" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 97/313 [========>.....................] - ETA: 2s - loss: 0.4086 - accuracy: 0.8049" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "103/313 [========>.....................] - ETA: 1s - loss: 0.4077 - accuracy: 0.8060" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "109/313 [=========>....................] - ETA: 1s - loss: 0.4088 - accuracy: 0.8063" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "115/313 [==========>...................] - ETA: 1s - loss: 0.4058 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "121/313 [==========>...................] - ETA: 1s - loss: 0.4074 - accuracy: 0.8090" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "127/313 [===========>..................] - ETA: 1s - loss: 0.4071 - accuracy: 0.8088" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "133/313 [===========>..................] - ETA: 1s - loss: 0.4046 - accuracy: 0.8107" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "139/313 [============>.................] - ETA: 1s - loss: 0.4033 - accuracy: 0.8119" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "145/313 [============>.................] - ETA: 1s - loss: 0.4026 - accuracy: 0.8112" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "151/313 [=============>................] - ETA: 1s - loss: 0.3998 - accuracy: 0.8128" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "157/313 [==============>...............] - ETA: 1s - loss: 0.3986 - accuracy: 0.8129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "163/313 [==============>...............] - ETA: 1s - loss: 0.3982 - accuracy: 0.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "169/313 [===============>..............] - ETA: 1s - loss: 0.3990 - accuracy: 0.8129" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "175/313 [===============>..............] - ETA: 1s - loss: 0.3971 - accuracy: 0.8137" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "180/313 [================>.............] - ETA: 1s - loss: 0.3960 - accuracy: 0.8148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "186/313 [================>.............] - ETA: 1s - loss: 0.3969 - accuracy: 0.8148" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "192/313 [=================>............] - ETA: 1s - loss: 0.3957 - accuracy: 0.8160" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "198/313 [=================>............] - ETA: 1s - loss: 0.3936 - accuracy: 0.8166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "204/313 [==================>...........] - ETA: 0s - loss: 0.3930 - accuracy: 0.8166" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "210/313 [===================>..........] - ETA: 0s - loss: 0.3930 - accuracy: 0.8169" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "216/313 [===================>..........] - ETA: 0s - loss: 0.3910 - accuracy: 0.8173" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "222/313 [====================>.........] - ETA: 0s - loss: 0.3894 - accuracy: 0.8183" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "228/313 [====================>.........] - ETA: 0s - loss: 0.3875 - accuracy: 0.8192" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "234/313 [=====================>........] - ETA: 0s - loss: 0.3861 - accuracy: 0.8206" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "240/313 [======================>.......] - ETA: 0s - loss: 0.3840 - accuracy: 0.8223" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "246/313 [======================>.......] - ETA: 0s - loss: 0.3824 - accuracy: 0.8234" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "252/313 [=======================>......] - ETA: 0s - loss: 0.3823 - accuracy: 0.8238" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "258/313 [=======================>......] - ETA: 0s - loss: 0.3809 - accuracy: 0.8247" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "264/313 [========================>.....] - ETA: 0s - loss: 0.3790 - accuracy: 0.8258" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "270/313 [========================>.....] - ETA: 0s - loss: 0.3792 - accuracy: 0.8257" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "276/313 [=========================>....] - ETA: 0s - loss: 0.3782 - accuracy: 0.8263" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "282/313 [==========================>...] - ETA: 0s - loss: 0.3771 - accuracy: 0.8270" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "288/313 [==========================>...] - ETA: 0s - loss: 0.3765 - accuracy: 0.8277" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "294/313 [===========================>..] - ETA: 0s - loss: 0.3750 - accuracy: 0.8283" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "299/313 [===========================>..] - ETA: 0s - loss: 0.3746 - accuracy: 0.8284" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "305/313 [============================>.] - ETA: 0s - loss: 0.3739 - accuracy: 0.8289" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "311/313 [============================>.] - ETA: 0s - loss: 0.3728 - accuracy: 0.8298" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 3s 10ms/step - loss: 0.3725 - accuracy: 0.8299 - val_loss: 0.3418 - val_accuracy: 0.8454\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Epoch 3/3\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/313 [..............................] - ETA: 3s - loss: 0.4751 - accuracy: 0.7812" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 7/313 [..............................] - ETA: 2s - loss: 0.3500 - accuracy: 0.8504" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 13/313 [>.............................] - ETA: 2s - loss: 0.3312 - accuracy: 0.8522" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 19/313 [>.............................] - ETA: 2s - loss: 0.3273 - accuracy: 0.8520" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 25/313 [=>............................] - ETA: 2s - loss: 0.3250 - accuracy: 0.8544" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 31/313 [=>............................] - ETA: 2s - loss: 0.3236 - accuracy: 0.8543" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 37/313 [==>...........................] - ETA: 2s - loss: 0.3152 - accuracy: 0.8594" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 43/313 [===>..........................] - ETA: 2s - loss: 0.3134 - accuracy: 0.8597" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 48/313 [===>..........................] - ETA: 2s - loss: 0.3117 - accuracy: 0.8613" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 54/313 [====>.........................] - ETA: 2s - loss: 0.3116 - accuracy: 0.8634" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 59/313 [====>.........................] - ETA: 2s - loss: 0.3135 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 65/313 [=====>........................] - ETA: 2s - loss: 0.3146 - accuracy: 0.8589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 71/313 [=====>........................] - ETA: 2s - loss: 0.3156 - accuracy: 0.8589" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 77/313 [======>.......................] - ETA: 2s - loss: 0.3147 - accuracy: 0.8602" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 83/313 [======>.......................] - ETA: 2s - loss: 0.3156 - accuracy: 0.8611" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 89/313 [=======>......................] - ETA: 2s - loss: 0.3132 - accuracy: 0.8618" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", " 94/313 [========>.....................] - ETA: 2s - loss: 0.3102 - accuracy: 0.8629" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "100/313 [========>.....................] - ETA: 2s - loss: 0.3075 - accuracy: 0.8642" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "106/313 [=========>....................] - ETA: 1s - loss: 0.3049 - accuracy: 0.8659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "112/313 [=========>....................] - ETA: 1s - loss: 0.3055 - accuracy: 0.8647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "118/313 [==========>...................] - ETA: 1s - loss: 0.3065 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "124/313 [==========>...................] - ETA: 1s - loss: 0.3068 - accuracy: 0.8647" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "130/313 [===========>..................] - ETA: 1s - loss: 0.3068 - accuracy: 0.8645" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "136/313 [============>.................] - ETA: 1s - loss: 0.3055 - accuracy: 0.8659" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "142/313 [============>.................] - ETA: 1s - loss: 0.3044 - accuracy: 0.8674" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "148/313 [=============>................] - ETA: 1s - loss: 0.3018 - accuracy: 0.8681" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "154/313 [=============>................] - ETA: 1s - loss: 0.3008 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "160/313 [==============>...............] - ETA: 1s - loss: 0.3006 - accuracy: 0.8689" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "166/313 [==============>...............] - ETA: 1s - loss: 0.3028 - accuracy: 0.8683" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "172/313 [===============>..............] - ETA: 1s - loss: 0.3019 - accuracy: 0.8680" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "178/313 [================>.............] - ETA: 1s - loss: 0.3001 - accuracy: 0.8694" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "183/313 [================>.............] - ETA: 1s - loss: 0.3007 - accuracy: 0.8684" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "188/313 [=================>............] - ETA: 1s - loss: 0.3005 - accuracy: 0.8690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "194/313 [=================>............] - ETA: 1s - loss: 0.3001 - accuracy: 0.8693" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "200/313 [==================>...........] - ETA: 1s - loss: 0.3003 - accuracy: 0.8690" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "206/313 [==================>...........] - ETA: 0s - loss: 0.2994 - accuracy: 0.8691" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "212/313 [===================>..........] - ETA: 0s - loss: 0.2985 - accuracy: 0.8695" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "218/313 [===================>..........] - ETA: 0s - loss: 0.2974 - accuracy: 0.8701" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "224/313 [====================>.........] - ETA: 0s - loss: 0.2959 - accuracy: 0.8710" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "230/313 [=====================>........] - ETA: 0s - loss: 0.2948 - accuracy: 0.8717" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "236/313 [=====================>........] - ETA: 0s - loss: 0.2937 - accuracy: 0.8725" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "242/313 [======================>.......] - ETA: 0s - loss: 0.2926 - accuracy: 0.8728" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "248/313 [======================>.......] - ETA: 0s - loss: 0.2920 - accuracy: 0.8733" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "254/313 [=======================>......] - ETA: 0s - loss: 0.2917 - accuracy: 0.8738" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "260/313 [=======================>......] - ETA: 0s - loss: 0.2904 - accuracy: 0.8742" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "266/313 [========================>.....] - ETA: 0s - loss: 0.2895 - accuracy: 0.8748" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "272/313 [=========================>....] - ETA: 0s - loss: 0.2905 - accuracy: 0.8747" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "278/313 [=========================>....] - ETA: 0s - loss: 0.2890 - accuracy: 0.8757" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "284/313 [==========================>...] - ETA: 0s - loss: 0.2882 - accuracy: 0.8761" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "290/313 [==========================>...] - ETA: 0s - loss: 0.2875 - accuracy: 0.8765" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "296/313 [===========================>..] - ETA: 0s - loss: 0.2864 - accuracy: 0.8771" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "302/313 [===========================>..] - ETA: 0s - loss: 0.2855 - accuracy: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "308/313 [============================>.] - ETA: 0s - loss: 0.2850 - accuracy: 0.8778" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "313/313 [==============================] - 3s 10ms/step - loss: 0.2846 - accuracy: 0.8781 - val_loss: 0.3165 - val_accuracy: 0.8584\n" ] } ], "source": [ "history = model.fit(train_ds, validation_data=val_ds, epochs=3)" ] }, { "cell_type": "code", "execution_count": 75, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.609044Z", "iopub.status.busy": "2024-08-16T07:41:20.608788Z", "iopub.status.idle": "2024-08-16T07:41:20.789381Z", "shell.execute_reply": "2024-08-16T07:41:20.788669Z" }, "id": "gCMWCEtyaEbR" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", " 1/79 [..............................] - ETA: 0s - loss: 0.2093 - accuracy: 0.9219" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "26/79 [========>.....................] - ETA: 0s - loss: 0.3243 - accuracy: 0.8612" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "51/79 [==================>...........] - ETA: 0s - loss: 0.3186 - accuracy: 0.8569" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "76/79 [===========================>..] - ETA: 0s - loss: 0.3142 - accuracy: 0.8596" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "79/79 [==============================] - 0s 2ms/step - loss: 0.3165 - accuracy: 0.8584\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Loss: 0.3165397047996521\n", "Accuracy: 85.84%\n" ] } ], "source": [ "loss, accuracy = model.evaluate(val_ds)\n", "\n", "print(\"Loss: \", loss)\n", "print(\"Accuracy: {:2.2%}\".format(accuracy))" ] }, { "cell_type": "markdown", "metadata": { "id": "jGtqLXVnaaFy" }, "source": [ "### Export the model" ] }, { "cell_type": "code", "execution_count": 76, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.792905Z", "iopub.status.busy": "2024-08-16T07:41:20.792634Z", "iopub.status.idle": "2024-08-16T07:41:20.850931Z", "shell.execute_reply": "2024-08-16T07:41:20.850331Z" }, "id": "yE9WZARZaZr1" }, "outputs": [], "source": [ "export_model = tf.keras.Sequential(\n", " [vectorize_layer, model,\n", " layers.Activation('sigmoid')])\n", "\n", "export_model.compile(\n", " loss=losses.SparseCategoricalCrossentropy(from_logits=False),\n", " optimizer='adam',\n", " metrics=['accuracy'])" ] }, { "cell_type": "code", "execution_count": 77, "metadata": { "execution": { "iopub.execute_input": "2024-08-16T07:41:20.854440Z", "iopub.status.busy": "2024-08-16T07:41:20.853886Z", "iopub.status.idle": "2024-08-16T07:41:20.995063Z", "shell.execute_reply": "2024-08-16T07:41:20.994363Z" }, "id": "bhF8tDH-afoC" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\r", "1/1 [==============================] - ETA: 0s" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\b\r", "1/1 [==============================] - 0s 100ms/step\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Question: This is a fantastic movie.\n", "Predicted label: 1\n", "Question: This is a bad movie.\n", "Predicted label: 0\n", "Question: This movie was so bad that it was good.\n", "Predicted label: 0\n", "Question: I will never say yes to watching this movie.\n", "Predicted label: 1\n" ] } ], "source": [ "# 0 --> negative review\n", "# 1 --> positive review\n", "inputs = [\n", " \"This is a fantastic movie.\",\n", " \"This is a bad movie.\",\n", " \"This movie was so bad that it was good.\",\n", " \"I will never say yes to watching this movie.\",\n", "]\n", "\n", "predicted_scores = export_model.predict(inputs)\n", "predicted_labels = [int(round(x[0])) for x in predicted_scores]\n", "\n", "for input, label in zip(inputs, predicted_labels):\n", " print(\"Question: \", input)\n", " print(\"Predicted label: \", label)" ] }, { "cell_type": "markdown", "metadata": { "id": "q1KSXDFPWiPN" }, "source": [ "## Conclusion\n", "\n", "This tutorial demonstrated several ways to load and preprocess text. As a next step, you can explore additional text preprocessing [TensorFlow Text](https://www.tensorflow.org/text) tutorials, such as:\n", "\n", "- [BERT Preprocessing with TF Text](https://www.tensorflow.org/text/guide/bert_preprocessing_guide)\n", "- [Tokenizing with TF Text](https://www.tensorflow.org/text/guide/tokenizers)\n", "- [Subword tokenizers](https://www.tensorflow.org/text/guide/subwords_tokenizer)\n", "\n", "You can also find new datasets on [TensorFlow Datasets](https://www.tensorflow.org/datasets/catalog/overview). And, to learn more about `tf.data`, check out the guide on [building input pipelines](../../guide/data.ipynb)." ] } ], "metadata": { "accelerator": "GPU", "colab": { "gpuType": "T4", "private_outputs": true, "provenance": [ { "file_id": "1XHr3IzoXn_Si4HSDpY43hdTirjwMDvON", "timestamp": 1694267031282 }, { "file_id": "https://github.com/tensorflow/docs/blob/4daf8a1645ddb4dd97ef31dca2e456ffaedbc8a1/site/en/tutorials/load_data/text.ipynb", "timestamp": 1694092268316 } ], "toc_visible": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.19" } }, "nbformat": 4, "nbformat_minor": 0 }