CARVIEW |
Table and Chart Subplots in Python
How to create a subplot with tables and charts in Python with Plotly.
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Sign up for early access now.
Import CSV Data¶
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
import re
df = pd.read_csv("https://raw.githubusercontent.com/plotly/datasets/master/Mining-BTC-180.csv")
for i, row in enumerate(df["Date"]):
p = re.compile(" 00:00:00")
datetime = p.split(df["Date"][i])[0]
df.iloc[i, 1] = datetime
fig = make_subplots(
rows=3, cols=1,
shared_xaxes=True,
vertical_spacing=0.03,
specs=[[{"type": "table"}],
[{"type": "scatter"}],
[{"type": "scatter"}]]
)
fig.add_trace(
go.Scatter(
x=df["Date"],
y=df["Mining-revenue-USD"],
mode="lines",
name="mining revenue"
),
row=3, col=1
)
fig.add_trace(
go.Scatter(
x=df["Date"],
y=df["Hash-rate"],
mode="lines",
name="hash-rate-TH/s"
),
row=2, col=1
)
fig.add_trace(
go.Table(
header=dict(
values=["Date", "Number<br>Transactions", "Output<br>Volume (BTC)",
"Market<br>Price", "Hash<br>Rate", "Cost per<br>trans-USD",
"Mining<br>Revenue-USD", "Trasaction<br>fees-BTC"],
font=dict(size=10),
align="left"
),
cells=dict(
values=[df[k].tolist() for k in df.columns[1:]],
align = "left")
),
row=1, col=1
)
fig.update_layout(
height=800,
showlegend=False,
title_text="Bitcoin mining stats for 180 days",
)
fig.show()
Reference¶
See https://plotly.com/python/reference/table/ for more information regarding chart attributes!
For examples of Plotly Tables, see: https://plotly.com/python/table/
What About Dash?¶
Dash is an open-source framework for building analytical applications, with no Javascript required, and it is tightly integrated with the Plotly graphing library.
Learn about how to install Dash at https://dash.plot.ly/installation.
Everywhere in this page that you see fig.show()
, you can display the same figure in a Dash application by passing it to the figure
argument of the Graph
component from the built-in dash_core_components
package like this:
import plotly.graph_objects as go # or plotly.express as px
fig = go.Figure() # or any Plotly Express function e.g. px.bar(...)
# fig.add_trace( ... )
# fig.update_layout( ... )
from dash import Dash, dcc, html
app = Dash()
app.layout = html.Div([
dcc.Graph(figure=fig)
])
app.run(debug=True, use_reloader=False) # Turn off reloader if inside Jupyter
