CARVIEW |
Select Language
HTTP/2 200
accept-ranges: bytes
access-control-allow-origin: *
age: 0
cache-control: max-age=600
content-encoding: gzip
content-type: text/html; charset=utf-8
date: Mon, 13 Oct 2025 09:38:14 GMT
etag: W/"68e952e4-1bd0586"
expires: Mon, 13 Oct 2025 09:48:14 GMT
last-modified: Fri, 10 Oct 2025 18:39:32 GMT
server: Vercel
strict-transport-security: max-age=63072000
vary: Accept-Encoding
via: 1.1 varnish
x-cache: MISS
x-cache-hits: 0
x-fastly-request-id: f0903a57654cdb13eae1644049666f1a394cc7c6
x-github-request-id: A30F:14C5E9:1E17A9:249558:68ECC885
x-origin-cache: HIT
x-proxy-cache: MISS
x-robots-tag: index
x-served-by: cache-bom-vanm7210060-BOM
x-timer: S1760348294.035654,VS0,VE789
x-vercel-cache: MISS
x-vercel-id: bom1::ncmxq-1760348294019-d78c26ed1677
content-length: 5982513
Manhattan plot in Python
Manhattan Plot in Python
Plotly Studio: Transform any dataset into an interactive data application in minutes with AI. Try Plotly Studio now.
Manhattan Plot¶
ManhattanPlot allows you to visualize genome-wide association studies (GWAS) efficiently. Using WebGL under the hood, you can interactively explore overviews of massive datasets comprising hundreds of thousands of points at once, or take a closer look at a small subset of your data. Hover data and click data are accessible from within the Dash app.
In [1]:
import pandas as pd
import dash_bio
df = pd.read_csv('https://raw.githubusercontent.com/plotly/dash-bio-docs-files/master/manhattan_data.csv')
dash_bio.ManhattanPlot(
dataframe=df,
)