You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Implement based on Official TF Repo. Only opened EfficientNet is included.
This repo not contains baseline network search(Mnas-Net) and compound coefficient search methods.
Some details(HyperParams, transform, EMA ...) are different with Original repo.
Pretrained network
This is not end-to-end imagenet trainning weight.
Using the Official TF Pretrained weight.
python3 main.py -h
usage: main.py [-h] --save_dir SAVE_DIR [--root ROOT] [--gpus GPUS]
[--num_workers NUM_WORKERS] [--model {b0}] [--epoch EPOCH]
[--batch_size BATCH_SIZE] [--test]
[--dropout_rate DROPOUT_RATE]
[--dropconnect_rate DROPCONNECT_RATE] [--optim {adam,rmsprop}]
[--lr LR] [--beta [BETA [BETA ...]]] [--momentum MOMENTUM]
[--eps EPS] [--decay DECAY]
Pytorch EfficientNet
optional arguments:
-h, --help show this help message and exit
--save_dir SAVE_DIR Directory name to save the model
--root ROOT The Directory of data path.
--gpus GPUS Select GPU Numbers | 0,1,2,3 |
--num_workers NUM_WORKERS
Select CPU Number workers
--model {b0} The type of Efficient net.
--epoch EPOCH The number of epochs
--batch_size BATCH_SIZE
The size of batch
--test Only Test
--dropout_rate DROPOUT_RATE
--dropconnect_rate DROPCONNECT_RATE
--optim {adam,rmsprop}
--lr LR Base learning rate when train batch size is 256.
--beta [BETA [BETA ...]]
--momentum MOMENTUM
--eps EPS
--decay DECAY
TODO
Hyper Parameter / Imagenet Transformation Check
Implementation of Resolution Change
Validation on Imagenet Dataset
Clean up logging
About
A PyTorch implementation of " EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks."