You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
├── pixelda_gan_classifier.py # PIXELDA GAN (as per the paper)
├── pixelda_lsgan_classifier.py # Same architecture as of PIXELDA GAN with modified loss function similar to LS-GAN
├── dcgan_classifier.py # DCGAN architecture
├── run_classifier.py # Resume training or test a classifer
├── params.py # Model parameters
├── dataset.py # create dataloaders
├── plotter.py # generate plots parallelly
├── utils.py # utils
├── dataloader # custom dataloaders
│ ├── mnistm_loader.py
| └── usps_loader.py
├── classifiers # Classifiers' architecture
│ ├── mnist_classifier.py # Shared layered classifier (as per the paper)
| └── *.py # Other classifiers
├── GANs # GAN architecture
│ ├── dcgan.py # DC-GAN architecture
| └── pixelda_gan.py # PIXELDA-GAN architecture
├── data (not included in the repo)
│ ├── mnist # mnist data (not included in the repo); subdirectories will be created by pytorch (using torchvision.datasets)
│ | ├── processed
│ ├── test.pt
│ └── training.pt
│ | └── raw
│ ├── t10k-images-idx3-ubyte
│ ├── t10k-labels-idx1-ubyte
│ ├── train-images-idx3-ubyte
│ └── train-labels-idx1-ubyte
│ ├── mnist_m # MNIST-M dataset (not included in the repo)
(Download: https://drive.google.com/drive/folders/0B_tExHiYS-0vR2dNZEU4NGlSSW8)
│ | ├── mnist_m_test
│ └── *.png
│ | ├── mnist_m_train
│ └── *.png
│ ├── mnist_m_test_labels.txt
│ ├── mnist_m_train_labels.txt
│ └── usps # USPS dataset (not included in the repo)
(Download: https://github.com/marionmari/Graph_stuff/tree/master/usps_digit_data)
│ ├── usps_resampled.mat
│ └── usps_split.pkl # created by code
├── checkpoint # model files to be saved here (not included in the repo)
├── images # generated images to be saved here (not included in the repo)
└── plots # generated plots to be saved here (not included in the repo)