CARVIEW |
Select Language
HTTP/2 200
date: Sat, 19 Jul 2025 06:42:55 GMT
content-type: text/html; charset=utf-8
cache-control: max-age=0, private, must-revalidate
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
link: ; rel=preload; as=fetch; crossorigin=use-credentials
referrer-policy: no-referrer-when-downgrade
server-timing: issue_layout-fragment;desc="issue_layout fragment";dur=230.412381,issue_conversation_content-fragment;desc="issue_conversation_content fragment";dur=751.558103,issue_conversation_sidebar-fragment;desc="issue_conversation_sidebar fragment";dur=43.788337,nginx;desc="NGINX";dur=0.671221,glb;desc="GLB";dur=95.795226
strict-transport-security: max-age=31536000; includeSubdomains; preload
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With, Accept,Accept-Encoding, Accept, X-Requested-With
x-content-type-options: nosniff
x-frame-options: deny
x-voltron-version: fd8fbbc
x-xss-protection: 0
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=0uhGSG1EWC7L4%2F67dK7FJCYktmmSqfD9kXd%2F3RAmBAEIIabg2mST9ksbK3rf53nQPcmKYUyZh33Mzy4y3%2F3W0BV1w71PhC4%2Fg0M8rlJ%2BtQnECSoDHTA%2B5bhpxSeBwxq5wJ7x9OU%2BWfgO2jZh8fhIuQ%2FPvC6ngXYZzNiZocwJ%2Fteq5jjWQtK6dLdgbB%2Fc9nBmqxb2ScJL8W0FsdkDUfTIh045ja6093TniZRWehYo5hV1LPMTFy5AWllJ1v1pjlmX764QfwIthrBXAHOjdS1nHw%3D%3D--liG3wrUX5Y1r9Hzn--BAtGfXo2UdfA%2BVMNgIy0Ww%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1799320199.1752907375; Path=/; Domain=github.com; Expires=Sun, 19 Jul 2026 06:42:55 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Sun, 19 Jul 2026 06:42:55 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: 9EDA:0A87:1D3795:262ED2:687B3E6F
Multi-GPU support Β· Issue #42 Β· torch/cutorch Β· GitHub
No one assignedNo labelsNo typeNo projectsNo milestoneNone yetNo branches or pull requests
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 207
Closed
Description
MultiGPU support has been implemented in cutorch (and by extension all torch cuda libraries like cunn, cudnn etc.).
- Switch the device on the fly with cutorch.setDevice(devID)
- All cuda calls are asynchronous, and can be synchronized with cutorch.synchronize()
Example usage for tensors:
-- Let us do matrix addition for matrices sitting on two different GPUs
cutorch.setDevice(1)
matrix1 = torch.CudaTensor(10):fill(1)
print(matrix1) -- printing is a synchronous call, so you dont have to explicitly call cutorch.synchronize()
cutorch.setDevice(2)
matrix2 = torch.CudaTensor(10):fill(2)
print(matrix2)
matrix2:add(matrix1) -- matrix1 is seamlessly copied onto GPU2 and added to matrix2
print(matrix2)
if you want to do data-parallel training of neural nets (including convnets), your training loop can run like this:
For each mini-batch:
1. load data (preferably using multiple threads, for example using [threads-ffi](https://github.com/torch/threads-ffi))
2. loop over GPUs (the loop below will be completely anynchronous, so will run parallely)
2.1. model[gpuX]:forward
2.2. criterion[gpuX]:forward
2.3. criterion[gpuX]:backward
2.4. model[gpuX]:backward
3. cutorch.synchronize()
4. accumulate GPUx's gradParameters to GPU1's gradParameters
5. do SGD on GPU1
6. copy back GPU1's parameters to GPUx
7. cutorch.synchronize() and print accuracy etc.
Loop back to 1 for next mini-batch
Also, to train ConvNets using multiple GPUs, I recommend using CuDNN for the convolution layers, as I've tested that they are completely asynchronous (meaning that the processing runs parallely on multiple GPUs)
Comments below describe the technical details of changes made. If you just want to use Multi-GPU, you can stop reading now.
odellus, floringogianu, donglixp, miolini, iamalbert and 9 more
Metadata
Metadata
Assignees
Labels
No labels
Type
Projects
Milestone
Relationships
Development
Issue actions
You canβt perform that action at this time.