You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
A Chainer implementation of a Convolutional Network model for relation classification in the SemEval Task 8 dataset. This model performs Multi-Way Classification of Semantic Relations Between Pairs of Nominals in the SemEval 2010 task 8 dataset.
A Chainer implementation of a Convolutional Network model for relation classification in the SemEval Task 8 dataset. This model performs Multi-Way Classification of Semantic Relations Between Pairs of Nominals in the SemEval 2010 task 8 dataset.
Word Embeddings (It can be downloaded from https://nlp.stanford.edu/projects/glove/, the Stanford NLP group has a bunch of open source pre-trained Glove embeddings or you can use your own embeddings. Just specify the path in config.yaml)
Component-Whole(e2,e1) 12 15 The system as described above has its greatest application in an arrayed configuration of antenna elements .
The first part is the label ie, the relation between the nominals present at index 12 and 15 respectively.
Configuration parameters
All the config parameters and the hyperparameters of the model can be specified in the config.yaml file.
Train the model
python3 main.py config.yaml
About
A Chainer implementation of a Convolutional Network model for relation classification in the SemEval Task 8 dataset. This model performs Multi-Way Classification of Semantic Relations Between Pairs of Nominals in the SemEval 2010 task 8 dataset.