A collection of mathematical algorithms implemented in Zig, designed for educational purposes and showcasing Zig's performance.
Here is the updated markdown table with the Time Complexity column removed:
Algorithm | Description | Command | Difficulty |
---|---|---|---|
Basic Number Operations | |||
Armstrong Number Checker | Verifies Armstrong numbers | zig run src/algorithm/math/is_armstrong.zig |
Easy |
Digital Root | Recursive digit sum calculation | zig run src/algorithm/math/digital_root.zig |
Easy |
Happy Number Checker | Checks if a number is happy | zig run src/algorithm/math/happy_number.zig |
Easy |
Integer Square Root | Finds floor(√n) | zig run src/algorithm/math/integer_sqrt.zig |
Easy |
Leap Year Checker | Determines if year is leap | zig run src/algorithm/math/leap_year_checker.zig |
Easy |
Palindrome Number Checker | Checks if a number is a palindrome | zig run src/algorithm/math/palindrome_number.zig |
Easy |
Power of Two Checker | Checks if number is 2ⁿ | zig run src/algorithm/math/power_of_two.zig |
Easy |
Prime Number Checker | Checks if a number is prime | zig run src/algorithm/math/prime_checker.zig |
Easy |
Reverse Number | Reverses digits of a number | zig run src/algorithm/math/reverse_number.zig |
Easy |
Sum of Digits | Calculates digit sum | zig run src/algorithm/math/sum_of_digits.zig |
Easy |
Number Theory | |||
Abundant/Deficient Checker | Checks if number is abundant/deficient | zig run src/algorithm/math/abundant_deficient_checker.zig |
Easy |
Perfect Number Checker | Checks if a number is perfect | zig run src/algorithm/math/perfect_number_checker.zig |
Easy |
Strong Number Checker | Sum of digit factorials check | zig run src/algorithm/math/strong_number_checker.zig |
Easy |
GCD and LCM Calculator | Finds GCD and LCM | zig run src/algorithm/math/gcd_lcm_calculator.zig |
Medium |
Prime Counter | Counts primes up to n | zig run src/algorithm/math/prime_counter.zig |
Medium |
Prime Factorization | Computes prime factors | zig run src/algorithm/math/prime_factorization.zig |
Medium |
Euler's Totient Function | Counts coprime numbers | zig run src/algorithm/math/euler_totient.zig |
Hard |
Sequences and Series | |||
Factorial Calculator | Calculates n! | zig run src/algorithm/math/factorial.zig |
Easy |
Fibonacci Calculator | Calculates nth Fibonacci | zig run src/algorithm/math/fibonacci.zig |
Easy |
Lucas Numbers | Generates Lucas numbers | zig run src/algorithm/math/lucas_numbers.zig |
Easy |
Sequence Generator | Arithmetic/Geometric sequences | zig run src/algorithm/math/sequence_generator.zig |
Easy |
Collatz Conjecture | Steps to reach 1 | zig run src/algorithm/math/collatz_conjecture.zig |
Medium |
Trailing Zeros in Factorial | Counts trailing zeros in n! | zig run src/algorithm/math/factorial_trailing_zeroes.zig |
Medium |
Catalan Calculator | Calculates nth Catalan | zig run src/algorithm/math/catalan.zig |
Hard |
Advanced Mathematics | |||
Binomial Coefficient | Pascal's triangle coefficients | zig run src/algorithm/math/binomial_coefficient.zig |
Medium |
Matrix Multiplication | Performs matrix multiplication | zig run src/algorithm/math/matrix_multiplication.zig |
Medium |
Monte Carlo Pi | Estimates π using Monte Carlo simulation | zig run src/algorithm/math/monte_carlo_pi.zig |
Medium |
Quadratic Solver | Solves quadratic equations (ax² + bx + c = 0) | zig run src/algorithm/math/quadratic_solver.zig |
Medium |
Cantor Set Generator | Generates Cantor set | zig run src/algorithm/math/cantor_set.zig -- 0 1 3 |
Hard |
Chinese Remainder | Solves linear congruences | zig run src/algorithm/math/chinese_remainder.zig |
Hard |
Extended Euclidean | GCD and Bézout coefficients | zig run src/algorithm/math/euclidean_algorithm_extended.zig |
Hard |
Linear Interpolation | Linear interpolation | zig run src/algorithm/math/linear_interpolation.zig |
Hard |
Cartesian to Polar | Converts cartesian to polar coordinates | zig run src/algorithm/math/cartesian_to_polar.zig |
Medium |
Fast Fibonacci | Optimized Fibonacci calculation | zig run src/algorithm/math/fibonacci_fast.zig |
Medium |
Fibonacci Dynamic Programming | DP approach for Fibonacci | zig run src/algorithm/math/fibonacci_dynamic_programming.zig |
Medium |
Fibonacci Binet Formula | Binet's formula for Fibonacci | zig run src/algorithm/math/fibonacci_bnet_formula.zig |
Medium |
Fermat's Factorization | Integer factorization method | zig run src/algorithm/math/fermats_factorization.zig |
Hard |
Fast Fourier Transform | FFT implementation | zig run src/algorithm/math/fft.zig |
Hard |
Greatest Common Divisor | Alternative GCD implementation | zig run src/algorithm/math/greatest_common_divisor.zig |
Medium |
Karatsuba Multiplication | Fast multiplication algorithm | zig run src/algorithm/math/karatsuba.zig |
Hard |
Knapsack Problem | Dynamic programming solution | zig run src/algorithm/math/knapsack.zig |
Hard |
Large Factorials | Big number factorial calculation | zig run src/algorithm/math/large_factorials.zig |
Hard |
Modular Exponentiation | Fast modular exponentiation | zig run src/algorithm/math/modular_exponentiation.zig |
Medium |
Newton-Raphson Method | Root-finding algorithm | zig run src/algorithm/math/newton_raphson.zig |
Hard |
Pascal's Triangle | Generate Pascal's triangle | zig run src/algorithm/math/pascals_triangle.zig |
Medium |
Polynomial Addition | Add two polynomials | zig run src/algorithm/math/polynomial_add.zig |
Medium |
Series Sum | Calculate sum of series | zig run src/algorithm/math/series_sum.zig |
Easy |
Sieve of Eratosthenes | Prime number generation | zig run src/algorithm/math/sieve_of_eratosthenes.zig |
Medium |
- Zig Compiler:
-
Latest version recommended. Install via:
sh -c "$(curl -fsSL https://ziglang.org/download/index.json | jq -r '.master.url')"
-
To run any algorithm, use the Zig run command followed by the specific algorithm file path and any required arguments. For example:
zig run src/algorithm/math/prime_checker.zig
# or
zig test src/algorithm/math/prime_checker.zig
More information is available in the respective file comment header.
This repository provides a collection of mathematical algorithms implemented in Zig, showcasing the language's capabilities and performance. Each module is designed to be easily run and tested, making it a useful resource for learning and experimentation.
MIT License
Copyright (c) 2025 Ramsyana
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
Contributions are welcome! Here's how to contribute:
- Fork the repository
- Create your feature branch (git checkout -b feature/AmazingFeature)
- Commit your changes (git commit -m 'Add some AmazingFeature')
- Push to the branch (git push origin feature/AmazingFeature)
- Open a pull request
Ramsyana - ramsyana[at]mac[dot]com
I'm a system engineering enthusiast. Feel free to fork, clone, open issues, or contribute to this project. Don’t hesitate to reach out with any questions, suggestions, or collaboration ideas!