You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The Blue Brain Python Optimisation Library (BluePyOpt) is an extensible
framework for data-driven model parameter optimisation that wraps and
standardises several existing open-source tools.
It simplifies the task of creating and sharing these optimisations,
and the associated techniques and knowledge.
This is achieved by abstracting the optimisation and evaluation tasks
into various reusable and flexible discrete elements according to established
best-practices.
Further, BluePyOpt provides methods for setting up both small- and large-scale
optimisations on a variety of platforms,
ranging from laptops to Linux clusters and cloud-based compute infrastructures.
Citation
When you use the BluePyOpt software or method for your research, we ask you to cite the following publication (this includes poster presentations):
@ARTICLE{bluepyopt,
AUTHOR={Van Geit, Werner and Gevaert, Michael and Chindemi, Giuseppe and Rössert, Christian and Courcol, Jean-Denis and Muller, Eilif Benjamin and Schürmann, Felix and Segev, Idan and Markram, Henry},
TITLE={BluePyOpt: Leveraging open source software and cloud infrastructure to optimise model parameters in neuroscience},
JOURNAL={Frontiers in Neuroinformatics},
VOLUME={10},
YEAR={2016},
NUMBER={17},
URL={https://www.frontiersin.org/neuroinformatics/10.3389/fninf.2016.00017/abstract},
DOI={10.3389/fninf.2016.00017},
ISSN={1662-5196}
}
Publications that use or mention BluePyOpt
The list of publications that use or mention BluePyOpt can be found on the github wiki page.
The instruction below are written assuming you have access to a command shell on Linux / UNIX / MacOSX / Cygwin
Installation
If you want to use the ephys module of BluePyOpt, you first need to install NEURON with Python support on your machine.
And then bluepyopt itself:
pip install bluepyopt
Support for simulators other than NEURON is optional and not installed by default. If you want to use [Arbor](https://arbor-sim.org/) to run your models, use the following line instead to install bluepyopt.
pip install bluepyopt[arbor]
Cloud infrastructure
We provide instructions on how to set up an optimisation environment on cloud
infrastructure or cluster computers
here
Quick Start
Single compartmental model
An iPython notebook with an introductory optimisation of a one compartmental
model with 2 HH channels can be found at
Figure: The solution space of a single compartmental model with two parameters: the maximal conductance of Na and K ion channels. The color represents how well the model fits two objectives: when injected with two different currents, the model has to fire 1 and 4 action potential respectively during the stimuli. Dark blue is the best fitness. The blue circles represent solutions with a perfect score.
Neocortical Layer 5 Pyramidal Cell
Scripts for a more complex neocortical L5PC are in
this directory
An iPython notebook showing how to export a BluePyOpt cell in the neuroml format, how to create a LEMS simulation,
and how to run the LEMS simulation with the neuroml cell can be found at:
The API documentation can be found on ReadTheDocs.
Funding
This work has been partially funded by the European Union Seventh Framework Program (FP7/20072013) under grant agreement no. 604102 (HBP), the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 720270, 785907 (Human Brain Project SGA1/SGA2) and by the EBRAINS research infrastructure, funded from the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3).
This project/research was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne (EPFL), from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology.