You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
SLEAP is an open source deep-learning based framework for multi-animal pose tracking (Pereira et al., Nature Methods, 2022). It can be used to track any type or number of animals and includes an advanced labeling/training GUI for active learning and proofreading.
Features
Easy, one-line installation with support for all OSes
Purpose-built GUI and human-in-the-loop workflow for rapidly labeling large datasets
Single- and multi-animal pose estimation with top-down and bottom-up training strategies
State-of-the-art pretrained and customizable neural network architectures that deliver accurate predictions with very few labels
Fast training: 15 to 60 mins on a single GPU for a typical dataset
Fast inference: up to 600+ FPS for batch, <10ms latency for realtime
Support for remote training/inference workflow (for using SLEAP without GPUs)
Flexible developer API for building integrated apps and customization
Get some SLEAP
SLEAP is installed as a Python package. We strongly recommend using Miniconda to install SLEAP in its own environment.
You can find the latest version of SLEAP in the Releases page.
T.D. Pereira, N. Tabris, A. Matsliah, D. M. Turner, J. Li, S. Ravindranath, E. S. Papadoyannis, E. Normand, D. S. Deutsch, Z. Y. Wang, G. C. McKenzie-Smith, C. C. Mitelut, M. D. Castro, J. D’Uva, M. Kislin, D. H. Sanes, S. D. Kocher, S. S-H, A. L. Falkner, J. W. Shaevitz, and M. Murthy. Sleap: A deep learning system for multi-animal pose tracking. Nature Methods, 19(4), 2022
BibTeX:
@ARTICLE{Pereira2022sleap,
title={SLEAP: A deep learning system for multi-animal pose tracking},
author={Pereira, Talmo D and
Tabris, Nathaniel and
Matsliah, Arie and
Turner, David M and
Li, Junyu and
Ravindranath, Shruthi and
Papadoyannis, Eleni S and
Normand, Edna and
Deutsch, David S and
Wang, Z. Yan and
McKenzie-Smith, Grace C and
Mitelut, Catalin C and
Castro, Marielisa Diez and
D'Uva, John and
Kislin, Mikhail and
Sanes, Dan H and
Kocher, Sarah D and
Samuel S-H and
Falkner, Annegret L and
Shaevitz, Joshua W and
Murthy, Mala},
journal={Nature Methods},
volume={19},
number={4},
year={2022},
publisher={Nature Publishing Group}
}
}
SLEAP is currently being developed and maintained in the Talmo Lab at the Salk Institute for Biological Studies, in collaboration with the Murthy and Shaevitz labs at Princeton University.
This work was made possible through our funding sources, including:
NIH BRAIN Initiative R01 NS104899
Princeton Innovation Accelerator Fund
License
SLEAP is released under a Clear BSD License and is intended for research/academic use only. For commercial use, please contact: Laurie Tzodikov (Assistant Director, Office of Technology Licensing), Princeton University, 609-258-7256.