You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Requirements: python 2.7 or python 3.6; pytorch >= 0.4.0
Installation
This implementation is based on Hanjun Dai's structure2vec graph backend. Under the "lib/" directory, type
make -j4
to compile the necessary c++ files.
After that, under the root directory of this repository, type
./run_DGCNN.sh
to run DGCNN on dataset MUTAG with the default setting.
Or type
./run_DGCNN.sh DATANAME FOLD
to run on dataset = DATANAME using fold number = FOLD (1-10, corresponds to which fold to use as test data in the cross-validation experiments).
If you set FOLD = 0, e.g., typing "./run_DGCNN.sh DD 0", then it will run 10-fold cross validation on DD and report the average accuracy.
Alternatively, type
./run_DGCNN.sh DATANAME 1 200
to use the last 200 graphs in the dataset as testing graphs. The fold number 1 will be ignored.
Check "run_DGCNN.sh" for more options.
Datasets
Default graph datasets are stored in "data/DSName/DSName.txt". Check the "data/README.md" for the format.
In addition to the support of discrete node labels (tags), DGCNN now supports multi-dimensional continuous node features. One example dataset with continuous node features is "Synthie". Check "data/Synthie/Synthie.txt" for the format.
The first step is to transform your graphs to the format described in "data/README.md". You should put your testing graphs at the end of the file. Then, there is an option -test_number X, which enables using the last X graphs from the file as testing graphs. You may also pass X as the third argument to "run_DGCNN.sh" by
./run_DGCNN.sh DATANAME 1 X
where the fold number 1 will be ignored.
Reference
If you find the code useful, please cite our paper:
@inproceedings{zhang2018end,
title={An End-to-End Deep Learning Architecture for Graph Classification.},
author={Zhang, Muhan and Cui, Zhicheng and Neumann, Marion and Chen, Yixin},
booktitle={AAAI},
year={2018}
}