You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
CityLearn is an open source Farama Foundation Gymnasium environment for the implementation of Multi-Agent Reinforcement Learning (RL) for building energy coordination and demand response in cities. A major challenge for RL in demand response is the ability to compare algorithm performance. Thus, CityLearn facilitates and standardizes the evaluation of RL agents such that different algorithms can be easily compared with each other.
Environment Overview
CityLearn includes energy models of buildings and distributed energy resources (DER) including air-to-water heat pumps, electric heaters and batteries. A collection of building energy models makes up a virtual district (a.k.a neighborhood or community). In each building, space cooling, space heating and domestic hot water end-use loads may be independently satisfied through air-to-water heat pumps. Alternatively, space heating and domestic hot water loads can be satisfied through electric heaters.
CityLearn UI is a visual dashboard for exploring simulation data generated by the CityLearn framework. It was developed to simplify the analysis of results from smart energy communities, district energy coordination, demand response (among other applications), allowing users to visually inspect building-level components, compare simulation KPIs, and create simulation schemas with ease.
Compatibility: This version of the UI currently supports CityLearn v2.4.3 simulation data.
Developed by: José, a member of the SoftCPS, Software for Cyber-Physical Systems research group (ISEP, Portugal) in collaboration with the Intelligent Environments Lab, University of Texas at Austin.
About
Official reinforcement learning environment for demand response and load shaping