You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
this code is used for Molecule Generation Using Transformers and Policy Gradient Reinfocement Learning
System Requirements
the code ran on a 8-core CPU with 64GB or ram and TITAN RTX GPU.
using Linux: Ubuntu 18.04+
Installtion Guide
Install the conda enviroment using the following command:
conda env create -f environment.yml
Running Demo
Please follow the prerequisite before running the code:
Create a data folder in root dir of the project,
Create a gdb/gdb13 folder and download the GDB13 rand 1m smi file to it from the following link: https://gdb.unibe.ch/downloads/
Create a tokenizers folder in the data folder.
Create a results folder in the data folder.
All the code contains the hyper-parameters used in all of the expremiments
To train a language model and then perform reinforcement learning optimization run:
python3 MolGen/main.py --do_train --do_eval --dataset_path ./data/gdb/gdb13/gdb13.smi --tokenizer Char --tokenizer_path ./data/tokenizers/gdb13CharTokenizer.json --reward_fns QED --multipliers "lambda x: x" --batch_size 256
To only perform reinfocement learning optimization with a pretrained language model run:
python3 MolGen/main.py --load_pretrained --pretrained_path ./data/models/gpt_pre_rl_gdb13.pt --do_eval --dataset_path ./data/gdb/gdb13/gdb13.smi --tokenizer Char --tokenizer_path ./data/tokenizers/gdb13CharTokenizer.json --reward_fns QED --multipliers "lambda x: x" --batch_size 256
Cite
Mazuz, E., Shtar, G., Shapira, B. et al. Molecule generation using transformers and policy gradient reinforcement learning. Sci Rep 13, 8799 (2023). https://doi.org/10.1038/s41598-023-35648-w
@article{mazuz2023molecule,
title={Molecule generation using transformers and policy gradient reinforcement learning},
author={Mazuz, Eyal and Shtar, Guy and Shapira, Bracha and Rokach, Lior},
journal={Scientific Reports},
volume={13},
number={1},
pages={8799},
year={2023},
publisher={Nature Publishing Group UK London}
}