You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For training new models, you'll also need an NVIDIA GPU and NCCL
Installing Fairseq
git clone https://github.com/elbayadm/attn2d
cd attn2d
pip install --editable .
License
fairseq(-py) is MIT-licensed.
The license applies to the pre-trained models as well.
Citation
For Pervasive Attention, please cite:
@InProceedings{elbayad18conll,
author ="Elbayad, Maha and Besacier, Laurent and Verbeek, Jakob",
title = "Pervasive Attention: 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction",
booktitle = "Proceedings of the 22nd Conference on Computational Natural Language Learning",
year = "2018",
}
For our wait-k models, please cite:
@article{elbayad20waitk,
title={Efficient Wait-k Models for Simultaneous Machine Translation},
author={Elbayad, Maha and Besacier, Laurent and Verbeek, Jakob},
journal={arXiv preprint arXiv:2005.08595},
year={2020}
}
For Fairseq, please cite:
@inproceedings{ott2019fairseq,
title = {fairseq: A Fast, Extensible Toolkit for Sequence Modeling},
author = {Myle Ott and Sergey Edunov and Alexei Baevski and Angela Fan and Sam Gross and Nathan Ng and David Grangier and Michael Auli},
booktitle = {Proceedings of NAACL-HLT 2019: Demonstrations},
year = {2019},
}
About
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction