You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
It implements machine learning algorithms under the Gradient Boosting framework.
XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way.
The same code runs on major distributed environment (Kubernetes, Hadoop, SGE, Dask, Spark, PySpark) and can solve problems beyond billions of examples.
XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.
Checkout the Community Page.
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow