You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
# Install pyenv (https://github.com/pyenv/pyenv)
git clone https://github.com/pyenv/pyenv.git ~/.pyenv
echo 'export PYENV_ROOT="$HOME/.pyenv"' >> ~/.bash_profile
echo 'export PATH="$PYENV_ROOT/bin:$PATH"' >> ~/.bash_profile
echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n eval "$(pyenv init -)"\nfi' >> ~/.bash_profile
# Install python dependencies
sudo apt install build-essential libsqlite3-dev sqlite3 bzip2 libbz2-dev libffi-dev
# Install python
pyenv install 3.7.5
# Install dependency manager (https://poetry.eustace.io)
python -m pip install --user poetry
# Install dependencies
python -m poetry install
# Edit config file
cp env.sample .env
vim .env
# Train model
python -m poetry run python bin/train
# Run webserver (development)
python -m poetry run flask run
python -m poetry run gunicorn wsgi
# Get recommendations for user #1
curl https://localhost:5000/recommend/1
# Get recommendations for post #1
curl https://localhost:5000/similar/1
System requirements
Training on the full dataset of ~80 million favorites takes ~17 minutes (on an
E5-1650v4) and requires ~4GB of RAM. The trained model requires ~2GB of RAM.