You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I gave an earlier version of this talk first at IFIP Working Group 2.8 (functional programming) in 2014 and a newer version at Galois in Portland in April 2015.
The video isn't as good as the BayHac version, however, so I don't recommend it.
For the last several years, speed improvements in computing come mainly from increasing parallelism. Imperative programming, however, makes parallelization very difficult due to the many possible dependencies implied by effects. For decades, pure functional programming has held the promise of parallel execution while retaining the very simple semantics that enables practical, rigorous reasoning. This talk describes a prototype compiler from Haskell (not a library) to low-level hardware descriptions for massively parallel execution on reprogrammable logic devices. The compiler works by monomorphizing, miscellaneous other transformations, and conversion to the vocabulary of cartesian closed categories (CCCs), as captured in a small collection of Haskell type classes. One instance of those classes provides an interpretation as parallel circuits. I will show many examples of simple Haskell programs and corresponding compiler-generated circuits.