You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Thrust is a C++ parallel programming library which resembles the C++ Standard
Library. Thrust's high-level interface greatly enhances
programmer productivity while enabling performance portability between
GPUs and multicore CPUs. Interoperability with established technologies
(such as CUDA, TBB, and OpenMP) facilitates integration with existing
software. Develop high-performance applications rapidly with Thrust!
Thrust is included in the NVIDIA HPC SDK and the CUDA Toolkit.
Refer to the Quick Start Guide page for further information and examples.
Examples
Thrust is best explained through examples. The following source code
generates random numbers serially and then transfers them to a parallel
device where they are sorted.
#include<thrust/host_vector.h>
#include<thrust/device_vector.h>
#include<thrust/generate.h>
#include<thrust/sort.h>
#include<thrust/copy.h>
#include<algorithm>
#include<cstdlib>intmain(void)
{
// generate 32M random numbers serially
thrust::host_vector<int> h_vec(32 << 20);
std::generate(h_vec.begin(), h_vec.end(), rand);
// transfer data to the device
thrust::device_vector<int> d_vec = h_vec;
// sort data on the device (846M keys per second on GeForce GTX 480)thrust::sort(d_vec.begin(), d_vec.end());
// transfer data back to hostthrust::copy(d_vec.begin(), d_vec.end(), h_vec.begin());
return0;
}
This code sample computes the sum of 100 random numbers in parallel:
#include<thrust/host_vector.h>
#include<thrust/device_vector.h>
#include<thrust/generate.h>
#include<thrust/reduce.h>
#include<thrust/functional.h>
#include<algorithm>
#include<cstdlib>intmain(void)
{
// generate random data serially
thrust::host_vector<int> h_vec(100);
std::generate(h_vec.begin(), h_vec.end(), rand);
// transfer to device and compute sum
thrust::device_vector<int> d_vec = h_vec;
int x = thrust::reduce(d_vec.begin(), d_vec.end(), 0, thrust::plus<int>());
return0;
}
Releases
Thrust is distributed with the NVIDIA HPC SDK and the CUDA Toolkit in addition
to GitHub.
See the changelog for details about specific releases.
Thrust Release
Included In
1.10.0
NVIDIA HPC SDK 20.9
1.9.10-1
NVIDIA HPC SDK 20.7 & CUDA Toolkit 11.1
1.9.10
NVIDIA HPC SDK 20.5
1.9.9
CUDA Toolkit 11.0
1.9.8-1
NVIDIA HPC SDK 20.3
1.9.8
CUDA Toolkit 11.0 Early Access
1.9.7-1
CUDA Toolkit 10.2 for Tegra
1.9.7
CUDA Toolkit 10.2
1.9.6-1
NVIDIA HPC SDK 20.3
1.9.6
CUDA Toolkit 10.1 Update 2
1.9.5
CUDA Toolkit 10.1 Update 1
1.9.4
CUDA Toolkit 10.1
1.9.3
CUDA Toolkit 10.0
1.9.2
CUDA Toolkit 9.2
1.9.1-2
CUDA Toolkit 9.1
1.9.0-5
CUDA Toolkit 9.0
1.8.3
CUDA Toolkit 8.0
1.8.2
CUDA Toolkit 7.5
1.8.1
CUDA Toolkit 7.0
1.8.0
1.7.2
CUDA Toolkit 6.5
1.7.1
CUDA Toolkit 6.0
1.7.0
CUDA Toolkit 5.5
1.6.0
1.5.3
CUDA Toolkit 5.0
1.5.2
CUDA Toolkit 4.2
1.5.1
CUDA Toolkit 4.1
1.5.0
1.4.0
CUDA Toolkit 4.0
1.3.0
1.2.1
1.2.0
1.1.1
1.1.0
1.0.0
Adding Thrust To A CMake Project
Since Thrust is a header library, there is no need to build or install Thrust
to use it. The thrust directory contains a complete, ready-to-use Thrust
package upon checkout.
We provide CMake configuration files that make it easy to include Thrust
from other CMake projects. See the CMake README
for details.
Development Process
Thrust uses the CMake build system to build unit tests,
examples, and header tests. To build Thrust as a developer, the following
recipe should be followed:
# Clone Thrust and CUB repos recursively:
git clone --recursive https://github.com/NVIDIA/thrust.git
cd thrust
# Create build directory:
mkdir build
cd build
# Configure -- use one of the following:
cmake .. # Command line interface.
ccmake .. # ncurses GUI (Linux only)
cmake-gui # Graphical UI, set source/build directories in the app
# Build:
cmake --build . -j <num jobs> # invokes make (or ninja, etc)
# Run tests and examples:
ctest
By default, a serial CPP host system, CUDA accelerated device system, and
C++14 standard are used. This can be changed in CMake. More information on
configuring your Thrust build and creating a pull request can be found in
CONTRIBUTING.md.