CARVIEW |
Select Language
HTTP/2 200
date: Sat, 26 Jul 2025 01:44:52 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"0370f427ae622ecb0589bb976fc456dd"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=ZsgC3mQ9JFQfknWMG0Z7bLNZp%2B41TZEoR19H19fceyrL%2Bvxf%2Fl0tCVMBa3vR%2Bl8Fb9oi%2Fux%2B7GSldap3hWuwTTEYBjrc7uxTBMTfCNiLSW59sDthSNuk5uMsfKdbkZAlT6c890vC9NSBEhPh12wAj%2BciXEV1D0yT%2FImMo85GKVDHE4qHOz%2FtaMARnUYyA4t9%2F6fN9gtyvnBJwM8oRbUtTiYxZXX8zta2%2Bak2PWMM%2BO4KaMpTy240kd1eYFIi59%2FyIbOmBzg%2FziANh9Cs3Y4%2Brw%3D%3D--vOvd1wqG0qdHh%2Ff9--kZBFelPIL9jEEVXHKjzgaw%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1999589271.1753494292; Path=/; Domain=github.com; Expires=Sun, 26 Jul 2026 01:44:52 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Sun, 26 Jul 2026 01:44:52 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: B420:872F4:98AFA:F40AF:68843314
Usage with Fast.ai · UniversalDataTool/universal-data-tool Wiki · GitHub
Skip to content
Navigation Menu
{{ message }}
-
-
Notifications
You must be signed in to change notification settings - Fork 193
Usage with Fast.ai
Severin Ibarluzea edited this page Apr 10, 2020
·
6 revisions
Universal Data Tool files integrate easily with fast.ai libraries. First, export your project to a *.udt.csv
file.
For image_classification
.
from fastai import *
from fastai.vision import *
df = pd.read_csv("./myfile.udt.csv")
samples = df[df.path.str.contains("samples")]
url_list = [str(a) for a in list(samples["imageUrl"])]
open("./images.txt", "w").write("\n".join(url_list))
# Download all the sample images into an "images" directory
download_images("./images.txt", "./images", max_pics = 10000)
labels = pd.DataFrame(data={
"image": (df.index - 1).astype("str").str.zfill(8) + ".jpg",
"output": df["output"]
})
# OPTIONAL: Delete bad images and remove missing images
verify_images("./images", delete=True)
missing_images = list([img for img in labels["image"] if not(Path("./images") / img).exists()])
labels = labels[~labels["image"].isin(missing_images)]
# Create ImageDataBunch
data = ImageDataBunch.from_df(".", labels, folder="images", seed=42,
label_col="output", bs=4, size=224,
ds_tfms=get_transforms()).normalize(imagenet_stats)
Move all your files into some kind of "images" directory on the GPU machine. Then run code similar to the code below. The example below is for image classification, but you should be able to modify the steps for other image tasks.
from fastai import *
from fastai.vision import *
df = pd.read_csv("./myfile.udt.csv")
# Create a filename column with just the filenames, remove the other columns
df["filename"] = [a.split("/")[-1] if isinstance(a,str) else a for a in list(df["imageUrl"])]
df = df[["filename", "output.classification"]]
# Remove any invalid entries
df.set_index("filename", inplace=True)
df.drop(np.NaN, inplace=True)
df.reset_index(inplace=True)
data = ImageDataBunch.from_df(".", idb_df, folder="./images", seed=42,
label_col="output.classification", bs=4, size=224,
ds_tfms=get_transforms()).normalize(imagenet_stats)
Now your databunch is ready for some learning!
You can’t perform that action at this time.