You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jan 26, 2021. It is now read-only.
LightLDA is a distributed system for large scale topic modeling. It implements a distributed sampler that enables very large data sizes and models. LightLDA improves sampling throughput and convergence speed via a fast O(1) metropolis-Hastings algorithm, and allows small cluster to tackle very large data and model sizes through model scheduling and data parallelism architecture. LightLDA is implemented with C++ for performance consideration.
We have sucessfully trained big topic models (with trillions of parameters) on big data (Top 10% PageRank values of Bing indexed page, containing billions of documents) in Microsoft. For more technical details, please refer to our WWW'15 paper.
Scalable: LightLDA can train models with trillions of parameters on big data with billions of documents, a scale previous implementations cann't handle.
Fast: The sampler can sample millions of tokens per second per multi-core node.
Lightweight: Such big tasks can be trained with as few as tens of machines.
Quick Start
Run $ sh build.sh to build lightlda.
Run $ sh example/nytimes.sh for a simple example.
Reference
Please cite LightLDA if it helps in your research:
@inproceedings{yuan2015lightlda,
title={LightLDA: Big Topic Models on Modest Computer Clusters},
author={Yuan, Jinhui and Gao, Fei and Ho, Qirong and Dai, Wei and Wei, Jinliang and Zheng, Xun and Xing, Eric Po and Liu, Tie-Yan and Ma, Wei-Ying},
booktitle={Proceedings of the 24th International Conference on World Wide Web},
pages={1351--1361},
year={2015},
organization={International World Wide Web Conferences Steering Committee}
}