One of the most significant advantages of artificial deep neural networks has always been that they can pretty much take any kind of data as input and can approximate a non-linear function to predict on that data. I have been searching for online tutorials to create a neural network that takes tabular and image data as inputs and predicts a single value as output. So far, I have not found any start to end tutorials that implement such a network in PyTorch. Therefore I decided to tackle this question on my own. So in this tutorial, I will show you how you can use PyTorch Lightning
to predict real estate prices of houses through matching image data and tabular information. You can find the sample data sets used here. The full tutorial is available through my blog.
CARVIEW |
Select Language
HTTP/2 200
date: Thu, 24 Jul 2025 04:07:55 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"65f1364acdccb1d2e04c7fb27b006f4e"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=1a3Q0%2F1xh1Ntpkcdrar8HiftOt2SLcea2ezRLGTWdTxrPsMCd3HWFkx0ZtL8K9y3%2BQtbv%2FpxHJMwTOUU1qDL%2FLqpBtuQwQ8sKUZD78Cs4r3EJjB%2BTVHBjpjqTrm3PbZ4kmsE5BL%2FFHY7d1Q9%2FDElt9OsZrspN5XMBSWxHzzvMraPPtSjTKSex%2F4Fk%2BDmPrFs6JmrgJPi3VUOdwn9vN2MkRT3lCNLAPLZOE18WV0wUGBpGbCXQeZndI81gqhkAzX8RYg3qRBQLPViCfqZ3Yo%2F9g%3D%3D--EpTVTzMyJpw2DHRP--lmTC1fpBUW0qzDLbPxuV1g%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.1311647266.1753330074; Path=/; Domain=github.com; Expires=Fri, 24 Jul 2026 04:07:54 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Fri, 24 Jul 2026 04:07:54 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: A6EE:12BD61:12A6F6C:16B3803:6881B19A
GitHub - MarkusRosen/pytorch_multi_input_example: Multi-Input Deep Neural Networks with PyTorch-Lightning - Combine Image and Tabular Data
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 15
Multi-Input Deep Neural Networks with PyTorch-Lightning - Combine Image and Tabular Data
MarkusRosen/pytorch_multi_input_example
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Multi-Input Deep Neural Networks with PyTorch-Lightning - Combine Image and Tabular Data
Topics
Resources
Stars
Watchers
Forks
You can’t perform that action at this time.