CARVIEW |
Select Language
HTTP/2 200
date: Wed, 23 Jul 2025 06:19:18 GMT
content-type: text/html; charset=utf-8
vary: X-PJAX, X-PJAX-Container, Turbo-Visit, Turbo-Frame, X-Requested-With,Accept-Encoding, Accept, X-Requested-With
etag: W/"2eacfca96b584ed07252501f64e2262b"
cache-control: max-age=0, private, must-revalidate
strict-transport-security: max-age=31536000; includeSubdomains; preload
x-frame-options: deny
x-content-type-options: nosniff
x-xss-protection: 0
referrer-policy: no-referrer-when-downgrade
content-security-policy: default-src 'none'; base-uri 'self'; child-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/; connect-src 'self' uploads.github.com www.githubstatus.com collector.github.com raw.githubusercontent.com api.github.com github-cloud.s3.amazonaws.com github-production-repository-file-5c1aeb.s3.amazonaws.com github-production-upload-manifest-file-7fdce7.s3.amazonaws.com github-production-user-asset-6210df.s3.amazonaws.com *.rel.tunnels.api.visualstudio.com wss://*.rel.tunnels.api.visualstudio.com objects-origin.githubusercontent.com copilot-proxy.githubusercontent.com proxy.individual.githubcopilot.com proxy.business.githubcopilot.com proxy.enterprise.githubcopilot.com *.actions.githubusercontent.com wss://*.actions.githubusercontent.com productionresultssa0.blob.core.windows.net/ productionresultssa1.blob.core.windows.net/ productionresultssa2.blob.core.windows.net/ productionresultssa3.blob.core.windows.net/ productionresultssa4.blob.core.windows.net/ productionresultssa5.blob.core.windows.net/ productionresultssa6.blob.core.windows.net/ productionresultssa7.blob.core.windows.net/ productionresultssa8.blob.core.windows.net/ productionresultssa9.blob.core.windows.net/ productionresultssa10.blob.core.windows.net/ productionresultssa11.blob.core.windows.net/ productionresultssa12.blob.core.windows.net/ productionresultssa13.blob.core.windows.net/ productionresultssa14.blob.core.windows.net/ productionresultssa15.blob.core.windows.net/ productionresultssa16.blob.core.windows.net/ productionresultssa17.blob.core.windows.net/ productionresultssa18.blob.core.windows.net/ productionresultssa19.blob.core.windows.net/ github-production-repository-image-32fea6.s3.amazonaws.com github-production-release-asset-2e65be.s3.amazonaws.com insights.github.com wss://alive.github.com api.githubcopilot.com api.individual.githubcopilot.com api.business.githubcopilot.com api.enterprise.githubcopilot.com; font-src github.githubassets.com; form-action 'self' github.com gist.github.com copilot-workspace.githubnext.com objects-origin.githubusercontent.com; frame-ancestors 'none'; frame-src viewscreen.githubusercontent.com notebooks.githubusercontent.com; img-src 'self' data: blob: github.githubassets.com media.githubusercontent.com camo.githubusercontent.com identicons.github.com avatars.githubusercontent.com private-avatars.githubusercontent.com github-cloud.s3.amazonaws.com objects.githubusercontent.com release-assets.githubusercontent.com secured-user-images.githubusercontent.com/ user-images.githubusercontent.com/ private-user-images.githubusercontent.com opengraph.githubassets.com copilotprodattachments.blob.core.windows.net/github-production-copilot-attachments/ github-production-user-asset-6210df.s3.amazonaws.com customer-stories-feed.github.com spotlights-feed.github.com objects-origin.githubusercontent.com *.githubusercontent.com; manifest-src 'self'; media-src github.com user-images.githubusercontent.com/ secured-user-images.githubusercontent.com/ private-user-images.githubusercontent.com github-production-user-asset-6210df.s3.amazonaws.com gist.github.com; script-src github.githubassets.com; style-src 'unsafe-inline' github.githubassets.com; upgrade-insecure-requests; worker-src github.githubassets.com github.com/assets-cdn/worker/ github.com/assets/ gist.github.com/assets-cdn/worker/
server: github.com
content-encoding: gzip
accept-ranges: bytes
set-cookie: _gh_sess=HkR6%2Bb7h%2Bk5tF%2Fr5cZfaNORBNQvFcZhrplpse%2Fb59cqbkvg9M83DwyasISpq36ulDP5Ym8g7id5KKXJZ1VJNi39pESP1gzXRMf6XqKlrAV9bWH5GI9KGZuuXUCIAQfE7doYFigD7Yo07dvYuUU%2FCU4yIW9gqAzCtfvCBY%2FG9TuIf2VOdCw2kyYyA%2B5Xbf3lwjiHJ3aGnQ9H1mqFWZk176ZQisfUi5l1PHfrLOQIEKevwm5fIbRjZj8d77Jz3WwLHAaCVE2oleLgVOuz3e6QFvg%3D%3D--n8kT1DCXui2tWuoc--MKVF5SVv0WkTwYO9fHBzAQ%3D%3D; Path=/; HttpOnly; Secure; SameSite=Lax
set-cookie: _octo=GH1.1.2001790171.1753251558; Path=/; Domain=github.com; Expires=Thu, 23 Jul 2026 06:19:18 GMT; Secure; SameSite=Lax
set-cookie: logged_in=no; Path=/; Domain=github.com; Expires=Thu, 23 Jul 2026 06:19:18 GMT; HttpOnly; Secure; SameSite=Lax
x-github-request-id: BDCC:271430:4EB668:663C52:68807EE6
GitHub - HyTruongSon/GraphFlow: Deep Learning framework in C++/CUDA that supports symbolic/automatic differentiation, dynamic computation graphs, tensor/matrix operations accelerated by GPU and implementations of various state-of-the-art graph neural networks and other Machine Learning models including Covariant Compositional Networks For Learning Graphs [Risi et al]
Skip to content
Navigation Menu
{{ message }}
-
Notifications
You must be signed in to change notification settings - Fork 12
Deep Learning framework in C++/CUDA that supports symbolic/automatic differentiation, dynamic computation graphs, tensor/matrix operations accelerated by GPU and implementations of various state-of-the-art graph neural networks and other Machine Learning models including Covariant Compositional Networks For Learning Graphs [Risi et al]
License
HyTruongSon/GraphFlow
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
Framework: GraphFlow Author: Machine Learning Group of UChicago Institution: Department of Computer Science, The University of Chicago Copyright 2017 (c) UChicago. All rights reserved. Description ----------- GraphFlow is a Deep Learning framework in C++/CUDA that supports symbolic/automatic differentiation, dynamic computation graphs, tensor/matrix operations accelerated by GPU and implementations of various state-of-the-art graph neural networks: Covariant Compositional Networks [1] and many of its variants, Neural Graph Fingerprint [2], Learning Convolutional Neural Networks For Graphs [3], Gated Graph Sequence Neural Networks [4], Graph Convolution Networks [5], etc. In addition, GraphFlow also allows users to easily create the implementations of many other Machine Learning models: Linear regression, Multi-layer Perceptron, Autoencoder, Convolutional Neural Network (for Computer Vision), Long Short-Term Memory [6] and Gated Recurrent Units [7] (for Language Modelling), etc. Please check the tests/examples for the detailed API. Structure --------- GraphFlow/ and GraphFlow_32bit/ are CPU-bound frameworks, can be compiled by using [g++ -std=c++11 -pthread < Program >]. GraphFlow_gpu/ and GraphFlow_gpu_32bit/ are GPU-bound frameworks, can be compiled by using [nvcc -std=c++11 < Program >]. Main Contributor ---------------- Name: Hy Truong Son Advisor: Prof. Risi Kondor Position: PhD student in Machine Learning Email: hytruongson@uchicago.edu Website: people.inf.elte.hu/hytruongson/ Bugs Report ----------- Please contact emails hytruongson@uchicago.edu or sonpascal93@gmail.com for any bugs that you found. Thank you very much for your support! Reference --------- [1] Covariant Compositional Networks For Learning Graphs [Risi et al., 2017] [2] Convolutional Networks on Graphs for Learning Molecular Fingerprints [Duvenaud et al., 2015] [3] Learning Convolutional Neural Networks for Graphs [Niepert et al., 2016] [4] Gated Graph Sequence Neural Networks [Li et al., 2016] [5] Semi-Supervised Classification with Graph Convolutional Networks [Kipf et al., 2017] [6] Long Short-Term Memory [Schmidhuber et al., 1997] [7] Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling [Bengio et al., 2014] [8] Adam: A Method for Stochastic Optimization [Kingma et al., 2015] Tests/Examples -------------- 1. First-order Covariant Compositional Networks (CCN) [1] and its variants: tests/test_CCN_1D.cpp tests/test_SMP_theta*.cpp tests/test_SMP_1D*.cpp tests/test_Unrestricted_SMP_1D*.cpp SMP = Steerable Message Passing (This is another name of CCN that we used internally). 2. Second-order Covariant Compositional Networks (CCN) [2] and its variants: tests/test_SMP_beta*.cpp tests/test_SMP_beta*.cu tests/test_SMP_gamma*.cpp tests/test_SMP_omega*.cpp tests/test_SMP_omega*.cu tests/test_SMP_sigma*.cpp tests/test_SMP_2D*.cpp tests/test_Unrestricted_SMP_2D*.cpp SMP = Steerable Message Passing (This is another name of CCN that we used internally). 3. Neural Graph Fingerprint [2] and Graph Convolution Networks [5]: tests/test_GCN*.cpp 4. Gated Sequence Neural Networks [4]: tests/test_GRU_GCN*.cpp 5. Learning Convolutional Neural Networks [3]: tests/test_LCNN.cpp 6. Convolutional Neural Networks (on MNIST and CIFAR-10): tests/test_CNN*.cpp 7. Long Short-Term Memory [6] and Gated Recurrent Units [7] (for Language Modelling): tests/test_LSTM.cpp tests/test_GRU.cpp 8. AdaDelta, Adam, AdaMax [8] optimizations (on MNIST): tests/test_AdaDelta.cpp tests/test_Adam.cpp tests/test_AdaMax.cpp 9. Autoencoder and Multi-layer Perceptron (on MNIST): tests/test_autoencoder.cpp tests/test_mlp.cpp 10. Tensor Contraction [1] and Matrix Multiplication accelerated by GPU: tests/test_RisiContraction_18_gpu.cu tests/test_MatMul_gpu.cu CPU-bound (with multi-threading): tests/test_RisiContraction*.cpp
About
Deep Learning framework in C++/CUDA that supports symbolic/automatic differentiation, dynamic computation graphs, tensor/matrix operations accelerated by GPU and implementations of various state-of-the-art graph neural networks and other Machine Learning models including Covariant Compositional Networks For Learning Graphs [Risi et al]
Topics
Resources
License
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
You can’t perform that action at this time.