You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
EbOR: Environments for Example-based Object Rearrangement
Currently there are three environments in this repo:
Circle-21Ball1Class-v0
Cluster-21Ball3Class-v0
CircleCluster-21Ball3Class-v0
Install
Requirements
Ubuntu >= 18.04
python >= 3.6
gym>=0.20.0,<0.25.0a0
pybullet >= 3.2.5
opencv-python >= 4.6.0
Installation
git clone https://github.com/AaronAnima/EbOR
cd EbOR
pip install -e .
Getting Started
Launch the environment and run a random agent to see the environment in action:
python random_agent.py --render
Minimal example:
import gym
import ebor
import cv2
env = gym.make('CircleCluster-21Ball3Class-v0') # choose the environment
state = env.reset(is_random=False) # if is_random=False, the env will reset to a target example state
cv2.imshow('target', env.render()) # show the target image
cv2.waitKey(1)
while True:
done = False
state = env.reset()
while not done: # get done in 100 steps
random_action = env.action_space.sample() # get a random action
state, reward, done, info = env.step(random_action) # take a step
img = env.render() # render the image
cv2.imshow('img', img) # show the image
cv2.waitKey(1)
The environment
Citation
@inproceedings{
wu2022targf,
title={Tar{GF}: Learning Target Gradient Field for Object Rearrangement},
author={Mingdong Wu and Fangwei Zhong and Yulong Xia and Hao Dong},
booktitle={Advances in Neural Information Processing Systems},
editor={Alice H. Oh and Alekh Agarwal and Danielle Belgrave and Kyunghyun Cho},
year={2022},
url={https://openreview.net/forum?id=Euv1nXN98P3}
}