CARVIEW |
Select Language
HTTP/2 200
date: Sun, 27 Jul 2025 20:44:33 GMT
content-type: text/html; charset=utf-8
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
server: cloudflare
last-modified: Fri, 25 Jul 2025 15:24:59 GMT
access-control-allow-origin: *
expires: Sun, 27 Jul 2025 20:54:33 GMT
cache-control: max-age=600
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=CDSq3FLGhsi%2FIkq6dps9n1PHJGL4voevaCiG5pXqlPcDIzeHoQduLYfEBn4HGZYuDAH8P9q753nYi11%2Blzmc3HJBNVxx9S%2BZYg%3D%3D"}]}
x-proxy-cache: MISS
x-github-request-id: 5859:37D986:17E6CE:1C6295:68868FB0
age: 0
via: 1.1 varnish
x-served-by: cache-maa10243-MAA
x-cache: MISS
x-cache-hits: 0
x-timer: S1753649074.679602,VS0,VE231
vary: Accept-Encoding
x-fastly-request-id: 3defa60cdc771b6ba140601a348d5cb1cc095fb7
cf-cache-status: DYNAMIC
content-encoding: gzip
cf-ray: 965ef9b64a3fb080-BLR
alt-svc: h3=":443"; ma=86400
Array Functions – DuckDB
Search Shortcut cmd + k | ctrl + k
- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (Deprecated)
- Node.js (Neo)
- ODBC
- PHP
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- TRY
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Troubleshooting of Extensions
- Core Extensions
- Overview
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- DuckLake
- Encodings
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- Overview
- Iceberg REST Catalogs
- Amazon S3 Tables
- Amazon SageMaker Lakehouse (AWS Glue)
- Troubleshooting
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Working with Huge Databases
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- marimo Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Dutch Railway Datasets
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Troubleshooting
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- Development
- DuckDB Repositories
- Profiling
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Why DuckDB
- Code of Conduct
- Release Calendar
- Roadmap
- Sitemap
- Live Demo
Documentation
/ SQL
/ Functions
Array Functions
All LIST
functions work with the ARRAY
data type. Additionally, several ARRAY
-native functions are also supported.
Array-Native Functions
Function | Description |
---|---|
array_value(arg1, ...) |
Create an ARRAY containing the argument values. |
array_cross_product(array1, array2) |
Compute the cross product of two arrays of size 3. The array elements can not be NULL . |
array_cosine_similarity(array1, array2) |
Compute the cosine similarity between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
array_cosine_distance(array1, array2) |
Compute the cosine distance between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. This is equivalent to 1.0 - array_cosine_similarity . |
array_distance(array1, array2) |
Compute the distance between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
array_inner_product(array1, array2) |
Compute the inner product between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
array_negative_inner_product(array1, array2) |
Compute the negative inner product between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. This is equivalent to -array_inner_product . |
array_dot_product(array1, array2) |
Alias for array_inner_product(array1, array2) . |
array_negative_dot_product(array1, array2) |
Alias for array_negative_inner_product(array1, array2) . |
array_value(arg1, ..)
Description | Create an ARRAY containing the argument values. |
Example | array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT) |
Result | [1.0, 2.0, 3.0] |
array_cross_product(array1, array2)
Description | Compute the cross product of two arrays of size 3. The array elements can not be NULL . |
Example | array_cross_product(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | [-1.0, 2.0, -1.0] |
array_cosine_similarity(array1, array2)
Description | Compute the cosine similarity between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
Example | array_cosine_similarity(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | 0.9925833 |
array_cosine_distance(array1, array2)
Description | Compute the cosine distance between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. This is equivalent to 1.0 - array_cosine_similarity . |
Example | array_cosine_distance(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | 0.007416606 |
array_distance(array1, array2)
Description | Compute the distance between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
Example | array_distance(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | 1.7320508 |
array_inner_product(array1, array2)
Description | Compute the inner product between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. |
Example | array_inner_product(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | 20.0 |
array_negative_inner_product(array1, array2)
Description | Compute the negative inner product between two arrays of the same size. The array elements can not be NULL . The arrays can have any size as long as the size is the same for both arguments. This is equivalent to -array_inner_product |
Example | array_inner_product(array_value(1.0::FLOAT, 2.0::FLOAT, 3.0::FLOAT), array_value(2.0::FLOAT, 3.0::FLOAT, 4.0::FLOAT)) |
Result | -20.0 |
array_dot_product(array1, array2)
Description | Alias for array_inner_product(array1, array2) . |
Example | array_dot_product(l1, l2) |
Result | 20.0 |
array_negative_dot_product(array1, array2)
Description | Alias for array_negative_inner_product(array1, array2) . |
Example | array_negative_dot_product(l1, l2) |
Result | -20.0 |