CARVIEW |
Select Language
HTTP/2 200
date: Tue, 29 Jul 2025 04:51:57 GMT
content-type: text/html; charset=utf-8
nel: {"report_to":"cf-nel","success_fraction":0.0,"max_age":604800}
server: cloudflare
x-origin-cache: HIT
last-modified: Mon, 28 Jul 2025 10:54:22 GMT
access-control-allow-origin: *
expires: Tue, 29 Jul 2025 05:01:57 GMT
cache-control: max-age=600
report-to: {"group":"cf-nel","max_age":604800,"endpoints":[{"url":"https://a.nel.cloudflare.com/report/v4?s=st0VqIF7hNQvFP96RmnnREr%2FATw8WePZ%2BwygqIGfNt%2F41BriyoZnbGKGrMmepN3eeKL854gBbN1574MBCJWL64N6M4h34RRT4w%3D%3D"}]}
x-proxy-cache: MISS
x-github-request-id: 3BF9:29FBE4:319A1:40E53:6888536D
age: 0
via: 1.1 varnish
x-served-by: cache-bom-vanm7210025-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1753764718.738489,VS0,VE217
vary: Accept-Encoding
x-fastly-request-id: 639c9d5c69ddeffd19207b754aebda6a776edc57
cf-cache-status: DYNAMIC
content-encoding: gzip
cf-ray: 966a010dae503a51-BOM
alt-svc: h3=":443"; ma=86400
Export to Apache Arrow – DuckDB
Search Shortcut cmd + k | ctrl + k
- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (Deprecated)
- Node.js (Neo)
- ODBC
- PHP
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- TRY
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Troubleshooting of Extensions
- Core Extensions
- Overview
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- DuckLake
- Encodings
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- Overview
- Iceberg REST Catalogs
- Amazon S3 Tables
- Amazon SageMaker Lakehouse (AWS Glue)
- Troubleshooting
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Working with Huge Databases
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- marimo Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Dutch Railway Datasets
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Troubleshooting
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- Development
- DuckDB Repositories
- Profiling
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Why DuckDB
- Code of Conduct
- Release Calendar
- Roadmap
- Sitemap
- Live Demo
Documentation
/ Guides
/ Python
Export to Apache Arrow
All results of a query can be exported to an Apache Arrow Table using the arrow
function. Alternatively, results can be returned as a RecordBatchReader using the fetch_record_batch
function and results can be read one batch at a time. In addition, relations built using DuckDB's Relational API can also be exported.
Export to an Arrow Table
import duckdb
import pyarrow as pa
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# query the Apache Arrow Table "my_arrow_table" and return as an Arrow Table
results = duckdb.sql("SELECT * FROM my_arrow_table").arrow()
Export as a RecordBatchReader
import duckdb
import pyarrow as pa
my_arrow_table = pa.Table.from_pydict({'i': [1, 2, 3, 4],
'j': ["one", "two", "three", "four"]})
# query the Apache Arrow Table "my_arrow_table" and return as an Arrow RecordBatchReader
chunk_size = 1_000_000
results = duckdb.sql("SELECT * FROM my_arrow_table").fetch_record_batch(chunk_size)
# Loop through the results. A StopIteration exception is thrown when the RecordBatchReader is empty
while True:
try:
# Process a single chunk here (just printing as an example)
print(results.read_next_batch().to_pandas())
except StopIteration:
print('Already fetched all batches')
break
Export from Relational API
Arrow objects can also be exported from the Relational API. A relation can be converted to an Arrow table using the arrow
or to_arrow_table
functions, or a record batch using record_batch
.
A result can be exported to an Arrow table with arrow
or the alias fetch_arrow_table
, or to a RecordBatchReader using fetch_arrow_reader
.
import duckdb
# connect to an in-memory database
con = duckdb.connect()
con.execute('CREATE TABLE integers (i integer)')
con.execute('INSERT INTO integers VALUES (0), (1), (2), (3), (4), (5), (6), (7), (8), (9), (NULL)')
# Create a relation from the table and export the entire relation as Arrow
rel = con.table("integers")
relation_as_arrow = rel.arrow() # or .to_arrow_table()
# Or, calculate a result using that relation and export that result to Arrow
res = rel.aggregate("sum(i)").execute()
result_as_arrow = res.arrow() # or fetch_arrow_table()