CARVIEW |
- Installation
- Documentation
- Getting Started
- Connect
- Data Import
- Overview
- Data Sources
- CSV Files
- JSON Files
- Overview
- Creating JSON
- Loading JSON
- Writing JSON
- JSON Type
- JSON Functions
- Format Settings
- Installing and Loading
- SQL to / from JSON
- Caveats
- Multiple Files
- Parquet Files
- Partitioning
- Appender
- INSERT Statements
- Client APIs
- Overview
- Tertiary Clients
- ADBC
- C
- Overview
- Startup
- Configuration
- Query
- Data Chunks
- Vectors
- Values
- Types
- Prepared Statements
- Appender
- Table Functions
- Replacement Scans
- API Reference
- C++
- CLI
- Overview
- Arguments
- Dot Commands
- Output Formats
- Editing
- Safe Mode
- Autocomplete
- Syntax Highlighting
- Known Issues
- Dart
- Go
- Java (JDBC)
- Julia
- Node.js (Deprecated)
- Node.js (Neo)
- ODBC
- PHP
- Python
- Overview
- Data Ingestion
- Conversion between DuckDB and Python
- DB API
- Relational API
- Function API
- Types API
- Expression API
- Spark API
- API Reference
- Known Python Issues
- R
- Rust
- Swift
- Wasm
- SQL
- Introduction
- Statements
- Overview
- ANALYZE
- ALTER DATABASE
- ALTER TABLE
- ALTER VIEW
- ATTACH and DETACH
- CALL
- CHECKPOINT
- COMMENT ON
- COPY
- CREATE INDEX
- CREATE MACRO
- CREATE SCHEMA
- CREATE SECRET
- CREATE SEQUENCE
- CREATE TABLE
- CREATE VIEW
- CREATE TYPE
- DELETE
- DESCRIBE
- DROP
- EXPORT and IMPORT DATABASE
- INSERT
- LOAD / INSTALL
- MERGE INTO
- PIVOT
- Profiling
- SELECT
- SET / RESET
- SET VARIABLE
- SUMMARIZE
- Transaction Management
- UNPIVOT
- UPDATE
- USE
- VACUUM
- Query Syntax
- SELECT
- FROM and JOIN
- WHERE
- GROUP BY
- GROUPING SETS
- HAVING
- ORDER BY
- LIMIT and OFFSET
- SAMPLE
- Unnesting
- WITH
- WINDOW
- QUALIFY
- VALUES
- FILTER
- Set Operations
- Prepared Statements
- Data Types
- Overview
- Array
- Bitstring
- Blob
- Boolean
- Date
- Enum
- Interval
- List
- Literal Types
- Map
- NULL Values
- Numeric
- Struct
- Text
- Time
- Timestamp
- Time Zones
- Union
- Typecasting
- Expressions
- Overview
- CASE Expression
- Casting
- Collations
- Comparisons
- IN Operator
- Logical Operators
- Star Expression
- Subqueries
- TRY
- Functions
- Overview
- Aggregate Functions
- Array Functions
- Bitstring Functions
- Blob Functions
- Date Format Functions
- Date Functions
- Date Part Functions
- Enum Functions
- Interval Functions
- Lambda Functions
- List Functions
- Map Functions
- Nested Functions
- Numeric Functions
- Pattern Matching
- Regular Expressions
- Struct Functions
- Text Functions
- Time Functions
- Timestamp Functions
- Timestamp with Time Zone Functions
- Union Functions
- Utility Functions
- Window Functions
- Constraints
- Indexes
- Meta Queries
- DuckDB's SQL Dialect
- Overview
- Indexing
- Friendly SQL
- Keywords and Identifiers
- Order Preservation
- PostgreSQL Compatibility
- SQL Quirks
- Samples
- Configuration
- Extensions
- Overview
- Installing Extensions
- Advanced Installation Methods
- Distributing Extensions
- Versioning of Extensions
- Troubleshooting of Extensions
- Core Extensions
- Overview
- AutoComplete
- Avro
- AWS
- Azure
- Delta
- DuckLake
- Encodings
- Excel
- Full Text Search
- httpfs (HTTP and S3)
- Iceberg
- Overview
- Iceberg REST Catalogs
- Amazon S3 Tables
- Amazon SageMaker Lakehouse (AWS Glue)
- Troubleshooting
- ICU
- inet
- jemalloc
- MySQL
- PostgreSQL
- Spatial
- SQLite
- TPC-DS
- TPC-H
- UI
- VSS
- Guides
- Overview
- Data Viewers
- Database Integration
- File Formats
- Overview
- CSV Import
- CSV Export
- Directly Reading Files
- Excel Import
- Excel Export
- JSON Import
- JSON Export
- Parquet Import
- Parquet Export
- Querying Parquet Files
- File Access with the file: Protocol
- Network and Cloud Storage
- Overview
- HTTP Parquet Import
- S3 Parquet Import
- S3 Parquet Export
- S3 Iceberg Import
- S3 Express One
- GCS Import
- Cloudflare R2 Import
- DuckDB over HTTPS / S3
- Fastly Object Storage Import
- Meta Queries
- Describe Table
- EXPLAIN: Inspect Query Plans
- EXPLAIN ANALYZE: Profile Queries
- List Tables
- Summarize
- DuckDB Environment
- ODBC
- Performance
- Overview
- Environment
- Import
- Schema
- Indexing
- Join Operations
- File Formats
- How to Tune Workloads
- My Workload Is Slow
- Benchmarks
- Working with Huge Databases
- Python
- Installation
- Executing SQL
- Jupyter Notebooks
- marimo Notebooks
- SQL on Pandas
- Import from Pandas
- Export to Pandas
- Import from Numpy
- Export to Numpy
- SQL on Arrow
- Import from Arrow
- Export to Arrow
- Relational API on Pandas
- Multiple Python Threads
- Integration with Ibis
- Integration with Polars
- Using fsspec Filesystems
- SQL Editors
- SQL Features
- Snippets
- Creating Synthetic Data
- Dutch Railway Datasets
- Sharing Macros
- Analyzing a Git Repository
- Importing Duckbox Tables
- Copying an In-Memory Database to a File
- Troubleshooting
- Glossary of Terms
- Browsing Offline
- Operations Manual
- Overview
- DuckDB's Footprint
- Logging
- Securing DuckDB
- Non-Deterministic Behavior
- Limits
- DuckDB Docker Container
- Development
- DuckDB Repositories
- Profiling
- Building DuckDB
- Overview
- Build Configuration
- Building Extensions
- Android
- Linux
- macOS
- Raspberry Pi
- Windows
- Python
- R
- Troubleshooting
- Unofficial and Unsupported Platforms
- Benchmark Suite
- Testing
- Internals
- Sitemap
- Live Demo
The DuckDB Python package has its own repository at duckdb/duckdb-python and uses pybind11 to create Python bindings with DuckDB.
Prerequisites
This guide assumes:
- You have a working copy of the DuckDB Python package source (including git submodules and tags)
- You have Astral UV version >= 0.8.0 installed
- You run commands from the root of the duckdb-python source
We are opinionated about using Astral UV for Python environment and dependency management. While using pip for a development environment with an editable install without build isolation is possible, we don't provide guidance for that approach in this guide.
We use CLion as our IDE. This guide doesn't include specific instructions for other IDEs, but the setup should be similar.
1. DuckDB Python Repository
Start by forking duckdb-python into a personal repository, then clone your fork:
git clone --recurse-submodules [YOUR_FORK_URL]
cd duckdb-python
git remote add upstream https://github.com/duckdb/duckdb-python.git
git fetch --all
If you've already cloned without submodules:
git submodule update --init --recursive
git remote add upstream https://github.com/duckdb/duckdb-python.git
git fetch --all
Important notes:
- DuckDB is vendored as a git submodule and must be initialized
- DuckDB version determination depends on local availability of git tags
- If switching between branches with different submodule refs, add the git hooks:
git config --local core.hooksPath .githooks/
2. Install Astral uv
Install uv version >= 0.8.0.
Development Environment Setup
1. Platform-Specific Setup
All Platforms:
- Python 3.9+ supported
- uv >= 0.8.0 required
- CMake and Ninja (installed via UV)
- C++ compiler toolchain
Linux (Ubuntu 24.04):
sudo apt-get update
sudo apt-get install ccache
macOS:
# Xcode command line tools
xcode-select --install
Windows:
- Visual Studio 2019+ with C++ support
- Git for Windows
2. Install Dependencies and Build
Set up the development environment in two steps:
# Install all development dependencies without building the project
uv sync --no-install-project
# Build and install the project without build isolation
uv sync --no-build-isolation
Why two steps?
uv sync
performs editable installs by default with scikit-build-core using a persistent build-dir- The build happens in an isolated, ephemeral environment where cmake's paths point to non-existing directories
- Installing dependencies first, then building without isolation ensures proper cmake integration
3. Enable Pre-Commit Hooks
We run a number of linting, formatting and type-checking in CI. You can run all of these manually, but to make your life easier you can install the exact same checks we run in CI as git hooks with pre-commit, which is already installed as part of the dev dependencies:
uvx pre-commit install
This will run all required checks before letting your commit pass.
You can also install a post-checkout hook that always runs git submodule update --init --recursive
. When you change branches between main and a bugfix branch, this makes sure the duckdb submodule is always correctly initialized:
uvx pre-commit install --hook-type post-checkout
4. Verify Installation
uv run python -c "import duckdb; print(duckdb.sql('SELECT 42').fetchall())"
Development Workflow
Running Tests
Run all tests:
uv run --no-build-isolation pytest ./tests --verbose
Run fast tests only (excludes slow directory):
uv run --no-build-isolation pytest ./tests --verbose --ignore=./tests/slow
Test Coverage
Run with coverage (compiles extension with --coverage
for C++ coverage):
COVERAGE=1 uv run --no-build-isolation coverage run -m pytest ./tests --verbose
Check Python coverage:
uv run coverage html -d htmlcov-python
uv run coverage report --format=markdown
Check C++ coverage:
uv run gcovr \
--gcov-ignore-errors all \
--root "$PWD" \
--filter "${PWD}/src/duckdb_py" \
--exclude '.*/\.cache/.*' \
--gcov-exclude '.*/\.cache/.*' \
--gcov-exclude '.*/external/.*' \
--gcov-exclude '.*/site-packages/.*' \
--exclude-unreachable-branches \
--exclude-throw-branches \
--html --html-details -o coverage-cpp.html \
build/coverage/src/duckdb_py \
--print-summary
Building Wheels
Build wheel for your system:
uv build
Build for specific Python version:
uv build -p 3.9
Cleaning Build Artifacts
uv cache clean
rm -rf build .venv uv.lock
IDE Setup (CLion)
For CLion users, the project can be configured for C++ debugging of the Python extension:
CMake Profile Configuration
In Settings → Build, Execution, Deployment → CMake, create a Debug profile:
- Name: Debug
- Build type: Debug
- Generator: Ninja
- CMake Options:
-DCMAKE_PREFIX_PATH=$CMakeProjectDir$/.venv;$CMAKE_PREFIX_PATH
Python Debug Configuration
Create a CMake Application run configuration:
- Name: Python Debug
- Target:
All targets
- Executable:
[PROJECT_DIR]/.venv/bin/python3
- Program arguments:
$FilePath$
- Working directory:
$ProjectFileDir$
This allows setting C++ breakpoints and debugging Python scripts that use the DuckDB extension.
Debugging
Command Line Debugging
Set breakpoints and debug with lldb:
# Example Python script (test.py)
# import duckdb
# print(duckdb.sql("select * from range(1000)").df())
lldb -- .venv/bin/python3 test.py
In lldb:
# Set breakpoint (library loads when imported)
(lldb) br s -n duckdb::DuckDBPyRelation::FetchDF
(lldb) r
Cross-Platform Testing
You can run the packaging workflow manually on your fork for any branch, choosing platforms and test suites via the GitHub Actions web interface.
Troubleshooting
Build Issues
Missing git tags: If you forked DuckDB Python, ensure you have the upstream tags:
git remote add upstream https://github.com/duckdb/duckdb-python.git
git fetch --tags upstream
git push --tags
Platform-Specific Issues
Windows compilation: Ensure you have Visual Studio 2019+ with C++ support installed.