CARVIEW |
Select Language
HTTP/2 200
content-type: text/html
x-guploader-uploadid: AAwnv3Jelb8KdabaZ1AZ1QO7us1k9FQXTGG0AokUQCBIC0c5EwgXrAEZGxvHTzTvDXKtzwhL
cache-control: public, max-age=3600
expires: Sat, 11 Oct 2025 14:10:14 GMT
last-modified: Fri, 10 Oct 2025 01:07:16 GMT
etag: W/"d15090e0f2cb55ae4fbcd3c0b13f3518"
x-goog-generation: 1760058435958345
x-goog-metageneration: 1
x-goog-stored-content-encoding: identity
x-goog-stored-content-length: 139520
x-goog-meta-goog-reserved-file-mtime: 1760056816
x-goog-hash: crc32c=Na0FOA==, md5=0VCQ4PLLVa5PvNPAsT81GA==
x-goog-storage-class: STANDARD
accept-ranges: none
alt-svc: h3=":443"; ma=2592000,h3-29=":443"; ma=2592000
alt-svc: clear
referrer-policy: strict-origin-when-cross-origin
x-content-type-options: nosniff
strict-transport-security: max-age=63072000
content-security-policy: default-src 'self'; script-src 'report-sample' 'self' 'wasm-unsafe-eval' https://www.google-analytics.com/analytics.js https://www.googletagmanager.com/gtag/js assets.codepen.io production-assets.codepen.io https://js.stripe.com 'sha256-XNBp89FG76amD8BqrJzyflxOF9PaWPqPqvJfKZPCv7M=' 'sha256-YCNoU9DNiinACbd8n6UPyB/8vj0kXvhkOni9/06SuYw=' 'sha256-PZjP7OR6mBEtnvXIZfCZ5PuOlxoDF1LDZL8aj8c42rw='; script-src-elem 'report-sample' 'self' 'wasm-unsafe-eval' https://www.google-analytics.com/analytics.js https://www.googletagmanager.com/gtag/js assets.codepen.io production-assets.codepen.io https://js.stripe.com 'sha256-XNBp89FG76amD8BqrJzyflxOF9PaWPqPqvJfKZPCv7M=' 'sha256-YCNoU9DNiinACbd8n6UPyB/8vj0kXvhkOni9/06SuYw=' 'sha256-PZjP7OR6mBEtnvXIZfCZ5PuOlxoDF1LDZL8aj8c42rw='; style-src 'report-sample' 'self' 'unsafe-inline'; object-src 'none'; base-uri 'self'; connect-src 'self' developer.allizom.org bcd.developer.allizom.org bcd.developer.mozilla.org updates.developer.allizom.org updates.developer.mozilla.org https://*.google-analytics.com https://*.analytics.google.com https://*.googletagmanager.com https://incoming.telemetry.mozilla.org https://observatory-api.mdn.allizom.net https://observatory-api.mdn.mozilla.net https://api.github.com/search/issues stats.g.doubleclick.net https://api.stripe.com; font-src 'self'; frame-src 'self' interactive-examples.mdn.mozilla.net interactive-examples.mdn.allizom.net mdn.github.io live-samples.mdn.mozilla.net live-samples.mdn.allizom.net *.mdnplay.dev *.mdnyalp.dev *.play.test.mdn.allizom.net https://v2.scrimba.com https://scrimba.com jsfiddle.net www.youtube-nocookie.com codepen.io survey.alchemer.com https://js.stripe.com; img-src 'self' data: *.githubusercontent.com *.googleusercontent.com *.gravatar.com mozillausercontent.com firefoxusercontent.com profile.stage.mozaws.net profile.accounts.firefox.com developer.mozilla.org mdn.dev interactive-examples.mdn.mozilla.net interactive-examples.mdn.allizom.net wikipedia.org upload.wikimedia.org https://mdn.github.io/shared-assets/ https://mdn.dev/ https://*.google-analytics.com https://*.googletagmanager.com www.gstatic.com; manifest-src 'self'; media-src 'self' archive.org videos.cdn.mozilla.net https://mdn.github.io/shared-assets/; child-src 'self'; worker-src 'self';
x-frame-options: DENY
origin-trial: AxVILwizhbMjxFeHOn1P3R8niO1RJY/smaK4B4d1rLzc1gTaxtXMSaTi+FoigYgCw40uFRDwFcEAeqDR+vVLOW4AAABfeyJvcmlnaW4iOiJodHRwczovL2RldmVsb3Blci5tb3ppbGxhLm9yZyIsImZlYXR1cmUiOiJQcml2YXRlQXR0cmlidXRpb25WMiIsImV4cGlyeSI6MTc0MjA3OTYwMH0=
x-cloud-trace-context: f381464486468ce97dc885942476943d
date: Sat, 11 Oct 2025 13:10:14 GMT
server: Google Frontend
via: 1.1 google
vary: Accept-Encoding
content-encoding: gzip
x-cache: miss
Proving the Pythagorean theorem - MathML | MDN
Proving the Pythagorean theorem
This page outlines the proof of the Pythagorean theorem. Three equations are organized in the <mtable>
element to align the steps of the proof by the equal sign. The proof is also represented in LaTeX format in the <annotation>
element.
Proof
Statement: In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Specifically, if and are the legs and is the hypotenuse, then .
Proof: We can prove the theorem algebraically by showing that on this figure the area of the big square equals the area of the inner square (hypotenuse squared) plus the area of the four triangles:
html
<math display="block">
<semantics>
<mtable>
<!-- Step one -->
<mtr>
<mtd>
<msup>
<mrow>
<mo>(</mo>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
<mo>)</mo>
</mrow>
<mn>2</mn>
</msup>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>4</mn>
<mo>⋅</mo>
<mo>(</mo>
<mfrac>
<mn>1</mn>
<mn>2</mn>
</mfrac>
<mi>a</mi>
<mi>b</mi>
<mo>)</mo>
</mtd>
</mtr>
<!-- Step two -->
<mtr>
<mtd>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>2</mn>
<mi>a</mi>
<mi>b</mi>
<mo>+</mo>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<mn>2</mn>
<mi>a</mi>
<mi>b</mi>
</mtd>
</mtr>
<!-- Step three -->
<mtr>
<mtd>
<msup>
<mi>a</mi>
<mn>2</mn>
</msup>
<mo>+</mo>
<msup>
<mi>b</mi>
<mn>2</mn>
</msup>
</mtd>
<mtd>
<mo>=</mo>
</mtd>
<mtd>
<msup>
<mi>c</mi>
<mn>2</mn>
</msup>
</mtd>
</mtr>
</mtable>
<!-- Representation in TeX format -->
<annotation encoding="carview.php?tsp=application/x-tex">
\begin{aligned}
(a + b)^2 &= c^2 + 4 \cdot \left( \frac{1}{2} ab \right) \\
a^2 + 2ab + b^2 &= c^2 + 2ab \\
a^2 + b^2 &= c^2
\end{aligned}
</annotation>
</semantics>
</math>