| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Wed, 12 Nov 2025 22:40:13 GMT
access-control-allow-origin: *
strict-transport-security: max-age=31556952
etag: W/"69150ccd-74c6"
expires: Mon, 29 Dec 2025 20:18:48 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 0A0E:2118F1:937358:A58312:6952DFCF
accept-ranges: bytes
age: 0
date: Mon, 29 Dec 2025 20:08:48 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210088-BOM
x-cache: MISS
x-cache-hits: 0
x-timer: S1767038928.921514,VS0,VE220
vary: Accept-Encoding
x-fastly-request-id: 233d5a6fe0c46c0c7ee30b4c6f87711eaa0a5051
content-length: 6700
Convergent Functions, Divergent Forms
Convergent Functions, Divergent Forms
Hyeonseong Jeon* 1,2,
Ainaz Eftekhar* 1,3,
Aaron Walsman 4,
Kuo-Hao Zeng 3,
Ali Farhadi 1,3,
Ranjay Krishna 1,3
* Equal Contribution
1University of Washington, 2Seoul National University, 3Allen Institute for AI, 4Kempner Institute at Harvard University
1University of Washington, 2Seoul National University, 3Allen Institute for AI, 4Kempner Institute at Harvard University
NeurIPS 2025
is a compute-efficient co-design framework that discovers diverse, high-performing robot morphologies (divergent forms) using shared control policies (convergent functions) and dynamic local search