| CARVIEW |
Select Language
HTTP/2 200
server: GitHub.com
content-type: text/html; charset=utf-8
last-modified: Thu, 29 Jul 2021 14:06:53 GMT
access-control-allow-origin: *
etag: W/"6102b5fd-1f5d"
expires: Fri, 16 Jan 2026 08:21:54 GMT
cache-control: max-age=600
content-encoding: gzip
x-proxy-cache: MISS
x-github-request-id: 7FD8:7ED56:57B3C:6950A:6969F2CA
accept-ranges: bytes
age: 0
date: Fri, 16 Jan 2026 11:21:04 GMT
via: 1.1 varnish
x-served-by: cache-bom-vanm7210086-BOM
x-cache: HIT
x-cache-hits: 0
x-timer: S1768562464.357329,VS0,VE255
vary: Accept-Encoding
x-fastly-request-id: efcc09d2a4147b4abd2294a7cff27d8c5f671e7b
content-length: 2660
Isabel Valera
Prof. Dr. Isabel Valera
Saarland Informatics Campus
| E-mail: | ivalera@cs.uni-saarland.de |
| Address: | Department of Computer Science Saarland Informatics Campus Bldg. E1 1, R. 225 66123 Saarbrücken, Germany |
| Phone: | +49 (0)681 302-57328 |
COMPUTATIONAL DISCRIMINATION
Check out the implementation of fair logistic regression, which is able to provide predictions that do not discriminate with respect to one or more sensitive attributes. - FAIR CLASSIFICATION (Python) You can find more information about fair classifiers in our AISTATS'17 and WWW'17 papers. Please, feel free to send any suggestions, comments, bugs or alternative implementation to mzafar[at]mpi-sws.org© 2020 Isabel Valera, Saarlan Informatics Campus