HTTP/2 200
date: Mon, 28 Jul 2025 05:18:36 GMT
content-type: text/html
content-encoding: gzip
last-modified: Mon, 07 Jul 2025 17:39:25 GMT
cf-cache-status: DYNAMIC
vary: accept-encoding
report-to: {"endpoints":[{"url":"https:\/\/a.nel.cloudflare.com\/report\/v4?s=%2B8N1650auGPjIQmNC%2B8wvHw2%2FSlXU3Ty8Euo0JTYllGSgycPlREA7KoVVoqHdzPcqPjS0PZ%2FDHf9vOOM%2BYKrGmenYd5s6FITQM%2Fq8NCgtaQaN3JSQ1LMkZ5OA04zyD%2FcZ8fN"}],"group":"cf-nel","max_age":604800}
nel: {"success_fraction":0,"report_to":"cf-nel","max_age":604800}
server: cloudflare
cf-ray: 9661eab29d53c46e-BLR
server-timing: cfL4;desc="?proto=TCP&rtt=860&min_rtt=724&rtt_var=288&sent=6&recv=11&lost=0&retrans=0&sent_bytes=3385&recv_bytes=1024&delivery_rate=3309714&cwnd=252&unsent_bytes=0&cid=a7e204ee06467a3a&ts=303&x=0"
pandas.DataFrame.size — pandas 2.3.1 documentation
Skip to main content
pandas.DataFrame.size
-
property DataFrame.size[source]
Return an int representing the number of elements in this object.
Return the number of rows if Series. Otherwise return the number of
rows times number of columns if DataFrame.
See also
ndarray.size
Number of elements in the array.
Examples
>>> s = pd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3
>>> df = pd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df.size
4