You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
TensorFlow Fold is a library for
creating TensorFlow models that consume structured
data, where the structure of the computation graph depends on the structure of
the input data. For example, this model
implements TreeLSTMs for sentiment analysis
on parse trees of arbitrary shape/size/depth.
Fold implements dynamic batching.
Batches of arbitrarily shaped computation graphs are transformed to produce a
static computation graph. This graph has the same structure regardless of what
input it receives, and can be executed efficiently by TensorFlow.
This animation shows a recursive neural network run with dynamic batching. Operations of the same type appearing at the same depth in the computation graph (indicated by color in the animiation) are batched together regardless of whether or not they appear in the same parse tree. The Embed operation converts words to vector representations. The fully connected (FC) operation combines word vectors to form vector representations of phrases. The output of the network is a vector representation of an entire sentence. Although only a single parse tree of a sentence is shown, the same network can run, and batch together operations, over multiple parse trees of arbitrary shapes and sizes. The TensorFlow concat, while_loop, and gather ops are created once, prior to variable initialization, by Loom, the low-level API for TensorFlow Fold.