You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This is a personal reimplementation of SPyNet [1] using PyTorch. Should you be making use of this work, please cite the paper accordingly. Also, make sure to adhere to the licensing terms of the authors. Should you be making use of this particular implementation, please acknowledge it appropriately [2].
To run it on your own pair of images, use the following command. You can choose between various models, please make sure to see their paper / the code for more details.
I am afraid that I cannot guarantee that this reimplementation is correct. However, it produced results identical to the implementation of the original authors in the examples that I tried. Please feel free to contribute to this repository by submitting issues and pull requests.
comparison
license
As stated in the licensing terms of the authors of the paper, the models are free for non-commercial and scientific research purpose. Please make sure to further consult their licensing terms.
references
[1] @inproceedings{Ranjan_CVPR_2017,
author = {Ranjan, Anurag and Black, Michael J.},
title = {Optical Flow Estimation Using a Spatial Pyramid Network},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition},
year = {2017}
}
[2] @misc{pytorch-spynet,
author = {Simon Niklaus},
title = {A Reimplementation of {SPyNet} Using {PyTorch}},
year = {2018},
howpublished = {\url{https://github.com/sniklaus/pytorch-spynet}}
}
About
a reimplementation of Optical Flow Estimation using a Spatial Pyramid Network in PyTorch